Personalized privacy preservation

Yufei Tao, Xiaokui Xiao
{"title":"Personalized privacy preservation","authors":"Yufei Tao, Xiaokui Xiao","doi":"10.1145/1142473.1142500","DOIUrl":null,"url":null,"abstract":"We study generalization for preserving privacy in publication of sensitive data. The existing methods focus on a universal approach that exerts the same amount of preservation for all persons, with-out catering for their concrete needs. The consequence is that we may be offering insufficient protection to a subset of people, while applying excessive privacy control to another subset. Motivated by this, we present a new generalization framework based on the concept of personalized anonymity. Our technique performs the minimum generalization for satisfying everybody's requirements, and thus, retains the largest amount of information from the microdata. We carry out a careful theoretical study that leads to valuable insight into the behavior of alternative solutions. In particular, our analysis mathematically reveals the circumstances where the previous work fails to protect privacy, and establishes the superiority of the proposed solutions. The theoretical findings are verified with extensive experiments.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"724","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 724

Abstract

We study generalization for preserving privacy in publication of sensitive data. The existing methods focus on a universal approach that exerts the same amount of preservation for all persons, with-out catering for their concrete needs. The consequence is that we may be offering insufficient protection to a subset of people, while applying excessive privacy control to another subset. Motivated by this, we present a new generalization framework based on the concept of personalized anonymity. Our technique performs the minimum generalization for satisfying everybody's requirements, and thus, retains the largest amount of information from the microdata. We carry out a careful theoretical study that leads to valuable insight into the behavior of alternative solutions. In particular, our analysis mathematically reveals the circumstances where the previous work fails to protect privacy, and establishes the superiority of the proposed solutions. The theoretical findings are verified with extensive experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化隐私保护
研究了敏感数据发布中保护隐私的泛化方法。现有的方法侧重于一种普遍的方法,即对所有人施加相同数量的保护,而不考虑他们的具体需要。其后果是,我们可能对一部分人提供的保护不足,而对另一部分人施加了过度的隐私控制。基于此,我们提出了一个基于个性化匿名概念的泛化框架。我们的技术以最小的泛化来满足每个人的需求,从而从微数据中保留了最大量的信息。我们进行了仔细的理论研究,从而对替代解决方案的行为产生了有价值的见解。特别是,我们的分析在数学上揭示了以前的工作未能保护隐私的情况,并确立了所提出的解决方案的优越性。通过大量的实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data management projects at Google Record linkage: similarity measures and algorithms Query evaluation using overlapping views: completeness and efficiency DADA: a data cube for dominant relationship analysis MAXENT: consistent cardinality estimation in action
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1