Computationally Efficient MCTF for Scalable Video Coding

A. K. Karunakar, M. M. Manohara Pai
{"title":"Computationally Efficient MCTF for Scalable Video Coding","authors":"A. K. Karunakar, M. M. Manohara Pai","doi":"10.1109/ADCOM.2006.4289941","DOIUrl":null,"url":null,"abstract":"The discrete wavelet transforms (DWTs) applied temporally under motion compensation (MC) has recently become a very powerful tool in scalable video compression, especially when implemented through lifting. Due to bidirectional motion estimation in Motion Compensated Temporal Filtering (MCTF) framework the scalable encoder turns out to be very slow. Temporal filtering without motion compensation produces blur in the low frequency frames wherever there is a motion hence does not support temporal scalability. This paper proposes a technique that does temporal filtering without motion compensation to produce high frequency frame. The motion blocks are identified using the content of the high frequency frame and MCTF is applied only to those blocks. By applying motion estimation only to the selected blocks the technique significantly improves the speed of the encoder. In slow motion test video sequences the proposed technique performs well without compromising the quality of the video and in remaining classes of videos its complexity is reduced compared to the conventional MCTF.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The discrete wavelet transforms (DWTs) applied temporally under motion compensation (MC) has recently become a very powerful tool in scalable video compression, especially when implemented through lifting. Due to bidirectional motion estimation in Motion Compensated Temporal Filtering (MCTF) framework the scalable encoder turns out to be very slow. Temporal filtering without motion compensation produces blur in the low frequency frames wherever there is a motion hence does not support temporal scalability. This paper proposes a technique that does temporal filtering without motion compensation to produce high frequency frame. The motion blocks are identified using the content of the high frequency frame and MCTF is applied only to those blocks. By applying motion estimation only to the selected blocks the technique significantly improves the speed of the encoder. In slow motion test video sequences the proposed technique performs well without compromising the quality of the video and in remaining classes of videos its complexity is reduced compared to the conventional MCTF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算高效的MCTF可扩展视频编码
离散小波变换(DWTs)在运动补偿(MC)下的临时应用最近成为可扩展视频压缩的一个非常强大的工具,特别是当通过提升实现时。由于运动补偿时序滤波(MCTF)框架中的双向运动估计,可扩展编码器的速度非常慢。没有运动补偿的时间滤波在有运动的低频帧中产生模糊,因此不支持时间扩展性。本文提出了一种不加运动补偿的时域滤波产生高频帧的技术。使用高频帧的内容来识别运动块,并且MCTF仅应用于这些块。通过仅对选定的块应用运动估计,该技术显着提高了编码器的速度。在慢动作测试视频序列中,所提出的技术在不影响视频质量的情况下表现良好,并且在其他类别的视频中,与传统MCTF相比,其复杂性降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Integrity in the World Wide Web: Use of Nested Hash Function and a Fast Stream Cipher Feature Extraction Learning for Stereovision Based Robot Navigation System Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions On Evaluating Obfuscatory Strength of Alias-based Transforms using Static Analysis A Multi-Algorithmic Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1