{"title":"Real-Time Detection of Clone Attacks in Wireless Sensor Networks","authors":"Kai Xing, Fang Liu, Xiuzhen Cheng, D. Du","doi":"10.1109/ICDCS.2008.55","DOIUrl":null,"url":null,"abstract":"A central problem in sensor network security is that sensors are susceptible to physical capture attacks. Once a sensor is compromised, the adversary can easily launch clone attacks by replicating the compromised node, distributing the clones throughout the network, and starting a variety of insider attacks. Previous works against clone attacks suffer from either a high communication/storage overhead or a poor detection accuracy. In this paper, we propose a novel scheme for detecting clone attacks in sensor networks, which computes for each sensor a social fingerprint by extracting the neighborhood characteristics, and verifies the legitimacy of the originator for each message by checking the enclosed fingerprint. The fingerprint generation is based on the superimposed s-disjunct code, which incurs a very light communication and computation overhead. The fingerprint verification is conducted at both the base station and the neighboring sensors, which ensures a high detection probability. The security and performance analysis indicate that our algorithm can identify clone attacks with a high detection probability at the cost of a low computation/communication/storage overhead. To our best knowledge, our scheme is the first to provide realtime detection of clone attacks in an effective and efficient way.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191
Abstract
A central problem in sensor network security is that sensors are susceptible to physical capture attacks. Once a sensor is compromised, the adversary can easily launch clone attacks by replicating the compromised node, distributing the clones throughout the network, and starting a variety of insider attacks. Previous works against clone attacks suffer from either a high communication/storage overhead or a poor detection accuracy. In this paper, we propose a novel scheme for detecting clone attacks in sensor networks, which computes for each sensor a social fingerprint by extracting the neighborhood characteristics, and verifies the legitimacy of the originator for each message by checking the enclosed fingerprint. The fingerprint generation is based on the superimposed s-disjunct code, which incurs a very light communication and computation overhead. The fingerprint verification is conducted at both the base station and the neighboring sensors, which ensures a high detection probability. The security and performance analysis indicate that our algorithm can identify clone attacks with a high detection probability at the cost of a low computation/communication/storage overhead. To our best knowledge, our scheme is the first to provide realtime detection of clone attacks in an effective and efficient way.