{"title":"Designing Shapelets for Interpretable Data-Agnostic Classification","authors":"Riccardo Guidotti, A. Monreale","doi":"10.1145/3461702.3462553","DOIUrl":null,"url":null,"abstract":"Time series shapelets are discriminatory subsequences which are representative of a class, and their similarity to a time series can be used for successfully tackling the time series classification problem. The literature shows that Artificial Intelligence (AI) systems adopting classification models based on time series shapelets can be interpretable, more accurate, and significantly fast. Thus, in order to design a data-agnostic and interpretable classification approach, in this paper we first extend the notion of shapelets to different types of data, i.e., images, tabular and textual data. Then, based on this extended notion of shapelets we propose an interpretable data-agnostic classification method. Since the shapelets discovery can be time consuming, especially for data types more complex than time series, we exploit a notion of prototypes for finding candidate shapelets, and reducing both the time required to find a solution and the variance of shapelets. A wide experimentation on datasets of different types shows that the data-agnostic prototype-based shapelets returned by the proposed method empower an interpretable classification which is also fast, accurate, and stable. In addition, we show and we prove that shapelets can be at the basis of explainable AI methods.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Time series shapelets are discriminatory subsequences which are representative of a class, and their similarity to a time series can be used for successfully tackling the time series classification problem. The literature shows that Artificial Intelligence (AI) systems adopting classification models based on time series shapelets can be interpretable, more accurate, and significantly fast. Thus, in order to design a data-agnostic and interpretable classification approach, in this paper we first extend the notion of shapelets to different types of data, i.e., images, tabular and textual data. Then, based on this extended notion of shapelets we propose an interpretable data-agnostic classification method. Since the shapelets discovery can be time consuming, especially for data types more complex than time series, we exploit a notion of prototypes for finding candidate shapelets, and reducing both the time required to find a solution and the variance of shapelets. A wide experimentation on datasets of different types shows that the data-agnostic prototype-based shapelets returned by the proposed method empower an interpretable classification which is also fast, accurate, and stable. In addition, we show and we prove that shapelets can be at the basis of explainable AI methods.