A consensus algorithm for networks with process noise and quantization error

F. Rego, Ye Pu, A. Alessandretti, Antonio Pedro Aguiar, C. Jones
{"title":"A consensus algorithm for networks with process noise and quantization error","authors":"F. Rego, Ye Pu, A. Alessandretti, Antonio Pedro Aguiar, C. Jones","doi":"10.1109/ALLERTON.2015.7447044","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of quantized consensus where process noise or external inputs corrupt the state of each agent at each iteration. We propose a quantized consensus algorithm with progressive quantization, where the quantization interval changes in length at each iteration by a pre-specified value. We derive conditions on the design parameters of the algorithm to guarantee ultimate boundedness of the deviation from the average of each agent. Moreover, we determine explicitly the bounds of the consensus error under the assumption that the process disturbances are ultimately bounded within known bounds. A numerical example of cooperative path-following of a network of single integrators illustrates the performance of the proposed algorithm.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we address the problem of quantized consensus where process noise or external inputs corrupt the state of each agent at each iteration. We propose a quantized consensus algorithm with progressive quantization, where the quantization interval changes in length at each iteration by a pre-specified value. We derive conditions on the design parameters of the algorithm to guarantee ultimate boundedness of the deviation from the average of each agent. Moreover, we determine explicitly the bounds of the consensus error under the assumption that the process disturbances are ultimately bounded within known bounds. A numerical example of cooperative path-following of a network of single integrators illustrates the performance of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有过程噪声和量化误差的网络一致性算法
在本文中,我们解决了量化共识问题,其中过程噪声或外部输入在每次迭代中破坏每个代理的状态。我们提出了一种渐进量化的量化一致性算法,其中量化区间在每次迭代时的长度变化预设值。我们推导了算法设计参数的条件,以保证每个agent的平均偏差的最终有界性。此外,在过程扰动最终有界于已知界的假设下,我们明确地确定了一致误差的界。单个积分器网络协同路径跟踪的数值算例说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1