Similarity-based matrix completion algorithm for latent semantic indexing

Andri Mirzal
{"title":"Similarity-based matrix completion algorithm for latent semantic indexing","authors":"Andri Mirzal","doi":"10.1109/ICCSCE.2013.6719936","DOIUrl":null,"url":null,"abstract":"Latent semantic indexing (LSI) is an indexing method to improve performance of an information retrieval system by indexing terms that appear in related documents and weakening influences of terms that appear in unrelated documents. LSI usually is conducted by using the truncated singular value decomposition (SVD). The main difficulty in using this technique is its retrieval performance depends strongly on the choosing of an appropriate decomposition rank. In this paper, by observing the fact that the truncated SVD makes the related documents more connected, we devise a matrix completion algorithm that can mimick this capability. The proposed algorithm is nonparametric, has convergence guarantee, and produces a unique solution for each input. Thus it is more practical and easier to use than the truncated SVD. Experimental results using four standard datasets in LSI research show that the retrieval performances of the proposed algorithm are comparable to the best results offered by the truncated SVD over some decomposition ranks.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Latent semantic indexing (LSI) is an indexing method to improve performance of an information retrieval system by indexing terms that appear in related documents and weakening influences of terms that appear in unrelated documents. LSI usually is conducted by using the truncated singular value decomposition (SVD). The main difficulty in using this technique is its retrieval performance depends strongly on the choosing of an appropriate decomposition rank. In this paper, by observing the fact that the truncated SVD makes the related documents more connected, we devise a matrix completion algorithm that can mimick this capability. The proposed algorithm is nonparametric, has convergence guarantee, and produces a unique solution for each input. Thus it is more practical and easier to use than the truncated SVD. Experimental results using four standard datasets in LSI research show that the retrieval performances of the proposed algorithm are comparable to the best results offered by the truncated SVD over some decomposition ranks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似度的潜在语义索引矩阵补全算法
潜在语义索引(LSI)是一种通过索引在相关文档中出现的术语并减弱在不相关文档中出现的术语的影响来提高信息检索系统性能的索引方法。大规模集成电路通常采用截断奇异值分解(SVD)进行。使用该技术的主要困难在于其检索性能在很大程度上依赖于适当分解秩的选择。在本文中,通过观察截断的SVD使相关文档更紧密相连的事实,我们设计了一个矩阵补全算法来模仿这种能力。该算法是非参数的,具有收敛性保证,对每个输入都产生唯一解。因此,它比截断SVD更实用,更容易使用。在LSI研究中使用4个标准数据集的实验结果表明,该算法的检索性能与截断奇异值分解在某些分解阶上的最佳检索结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1