Patch Contour Matching by Correlating Fourier Descriptors

F. Larsson, M. Felsberg, Per-Erik Forssén
{"title":"Patch Contour Matching by Correlating Fourier Descriptors","authors":"F. Larsson, M. Felsberg, Per-Erik Forssén","doi":"10.1109/DICTA.2009.17","DOIUrl":null,"url":null,"abstract":"Fourier descriptors (FDs) is a classical but still popular method for contour matching. The key idea is to apply the Fourier transform to a periodic representation of the contour, which results in a shape descriptor in the frequency domain. Fourier descriptors have mostly been used to compare object silhouettes and object contours; we instead use this well established machinery to describe local regions to be used in an object recognition framework. We extract local regions using the Maximally Stable Extremal Regions (MSER) detector and represent the external contour by FDs. Many approaches to matching FDs are based on the magnitude of each FD component, thus ignoring the information contained in the phase. Keeping the phase information requires us to take into account the global rotation of the contour and shifting of the contour samples. We show that the sum-of-squared differences of FDs can be computed without explicitly de-rotating the contours. We compare our correlation based matching against affine-invariant Fourier descriptors (AFDs) and demonstrate that our correlation based approach outperforms AFDs on real world data.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fourier descriptors (FDs) is a classical but still popular method for contour matching. The key idea is to apply the Fourier transform to a periodic representation of the contour, which results in a shape descriptor in the frequency domain. Fourier descriptors have mostly been used to compare object silhouettes and object contours; we instead use this well established machinery to describe local regions to be used in an object recognition framework. We extract local regions using the Maximally Stable Extremal Regions (MSER) detector and represent the external contour by FDs. Many approaches to matching FDs are based on the magnitude of each FD component, thus ignoring the information contained in the phase. Keeping the phase information requires us to take into account the global rotation of the contour and shifting of the contour samples. We show that the sum-of-squared differences of FDs can be computed without explicitly de-rotating the contours. We compare our correlation based matching against affine-invariant Fourier descriptors (AFDs) and demonstrate that our correlation based approach outperforms AFDs on real world data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相关傅立叶描述子的斑块轮廓匹配
傅里叶描述子(FDs)是一种经典但仍然流行的轮廓匹配方法。关键思想是将傅里叶变换应用于轮廓的周期表示,从而得到频域的形状描述符。傅里叶描述子主要用于比较物体轮廓和物体轮廓;相反,我们使用这种完善的机器来描述局部区域,以便在对象识别框架中使用。我们使用最大稳定极值区域(MSER)检测器提取局部区域,并用fd表示外部轮廓。许多匹配FD的方法是基于每个FD分量的大小,从而忽略了相位中包含的信息。保持相位信息要求我们考虑轮廓的全局旋转和轮廓样本的移动。我们证明了fd的平方和差可以在不显式地旋转轮廓的情况下计算。我们将基于相关性的匹配与仿射不变傅立叶描述子(afd)进行比较,并证明基于相关性的方法在真实世界数据上优于afd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1