Topo-bathymetric and oceanographic datasets for coastal flooding risk assessment: French Flooding Prevention Action Program of Saint-Malo

Léo Seyfried, L. Biscara, F. Leckler, A. Pasquet, H. Michaud
{"title":"Topo-bathymetric and oceanographic datasets for coastal flooding risk assessment: French Flooding Prevention Action Program of Saint-Malo","authors":"Léo Seyfried, L. Biscara, F. Leckler, A. Pasquet, H. Michaud","doi":"10.5194/essd-2021-316","DOIUrl":null,"url":null,"abstract":"Abstract. The French Flooding Prevention Action Program of Saint-Malo requires assessment of coastal flooding risks. The first prerequisite is a knowledge of the topography and bathymetry of the bay of Saint-Malo. In addition to existing topo-bathymetric data, the acquisition of new multibeam bathymetric data is performed. The combination of these datasets allows the generation of two high resolution topo-bathymetric digital terrain models. Then, to understand the hydrodynamic conditions which cause coastal flooding, a dense and extensive oceanographic field experiment is conducted. Oceanographic data were acquired using a network of 22 moorings with 37 sensors, during winter 2018–2019. The network included 2 directional buoys, 2 pressure tide gauges, 18 wave pressure gauges, 4 single-point current meters, 7 current profilers and 4 acoustic wave-current profilers from mid-depth (25 m) up to the upper beach and the dike system. The oceanographic dataset provides an overview of hydrodynamics in Saint-Malo bay and wave processes leading to coastal flooding. The combination of high-resolution topo-bathymetric and oceanographic datasets provides a unique capability for model validation and process studies. The topo-bathymetric and oceanographic datasets are available freely at doi : https://doi.org/10.17183/MNT_COTIER_GNB_PAPI_SM_20m_WGS84, https://doi.org/10.17183/MNT_COTIER_PORT_SM_PAPI_SM_5m_WGS84,  and https://doi.org/10.17183/CAMPAGNE_OCEANO_STMALO.\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The French Flooding Prevention Action Program of Saint-Malo requires assessment of coastal flooding risks. The first prerequisite is a knowledge of the topography and bathymetry of the bay of Saint-Malo. In addition to existing topo-bathymetric data, the acquisition of new multibeam bathymetric data is performed. The combination of these datasets allows the generation of two high resolution topo-bathymetric digital terrain models. Then, to understand the hydrodynamic conditions which cause coastal flooding, a dense and extensive oceanographic field experiment is conducted. Oceanographic data were acquired using a network of 22 moorings with 37 sensors, during winter 2018–2019. The network included 2 directional buoys, 2 pressure tide gauges, 18 wave pressure gauges, 4 single-point current meters, 7 current profilers and 4 acoustic wave-current profilers from mid-depth (25 m) up to the upper beach and the dike system. The oceanographic dataset provides an overview of hydrodynamics in Saint-Malo bay and wave processes leading to coastal flooding. The combination of high-resolution topo-bathymetric and oceanographic datasets provides a unique capability for model validation and process studies. The topo-bathymetric and oceanographic datasets are available freely at doi : https://doi.org/10.17183/MNT_COTIER_GNB_PAPI_SM_20m_WGS84, https://doi.org/10.17183/MNT_COTIER_PORT_SM_PAPI_SM_5m_WGS84,  and https://doi.org/10.17183/CAMPAGNE_OCEANO_STMALO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于沿海洪水风险评估的地形水深和海洋学数据集:法国圣马洛洪水预防行动计划
摘要法国圣马洛洪水预防行动计划要求对沿海洪水风险进行评估。第一个先决条件是了解圣马洛湾的地形和水深。除了现有的地形测深数据外,还进行了新的多波束测深数据的采集。这些数据集的组合可以生成两个高分辨率的地形-测深数字地形模型。然后,为了了解引起沿海洪水的水动力条件,进行了密集而广泛的海洋实地试验。2018年至2019年冬季,海洋数据是通过22个系泊点和37个传感器组成的网络获取的。该网络包括2个定向浮标、2个压力潮汐计、18个波浪压力计、4个单点海流计、7个海流剖面仪和4个声波-海流剖面仪,从中水深(25米)一直到海滩上部和堤防系统。海洋学数据集概述了圣马洛湾的水动力学和导致沿海洪水的波浪过程。高分辨率地形水深和海洋学数据集的结合为模式验证和过程研究提供了独特的能力。地形水深和海洋学数据集可在以下网址免费获得:https://doi.org/10.17183/MNT_COTIER_GNB_PAPI_SM_20m_WGS84、https://doi.org/10.17183/MNT_COTIER_PORT_SM_PAPI_SM_5m_WGS84和https://doi.org/10.17183/CAMPAGNE_OCEANO_STMALO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1