Evaluating Embedded FPGA Accelerators for Deep Learning Applications

Gopalakrishna Hegde, Siddhartha, Nachiappan Ramasamy, Vamsi Buddha, Nachiket Kapre
{"title":"Evaluating Embedded FPGA Accelerators for Deep Learning Applications","authors":"Gopalakrishna Hegde, Siddhartha, Nachiappan Ramasamy, Vamsi Buddha, Nachiket Kapre","doi":"10.1109/FCCM.2016.14","DOIUrl":null,"url":null,"abstract":"FPGA-based embedded soft vector processors can exceed the performance and energy-efficiency of embedded GPUs and DSPs for lightweight deep learning applications. For low complexity deep neural networks targeting resource constrained platforms, we develop optimized Caffe-compatible deep learning library routines that target a range of embedded accelerator-based systems between 4 -- 8 W power budgets such as the Xilinx Zedboard (with MXP soft vector processor), NVIDIA Jetson TK1 (GPU), InForce 6410 (DSP), TI EVM5432 (DSP) as well as the Adapteva Parallella board (custom multi-core with NoC). For MNIST (28×28 images) and CIFAR10 (32×32 images), the deep layer structure is amenable to MXP-enhanced FPGA mappings to deliver 1.4 -- 5× higher energy efficiency than all other platforms. Not surprisingly, embedded GPU works better for complex networks with large image resolutions.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

FPGA-based embedded soft vector processors can exceed the performance and energy-efficiency of embedded GPUs and DSPs for lightweight deep learning applications. For low complexity deep neural networks targeting resource constrained platforms, we develop optimized Caffe-compatible deep learning library routines that target a range of embedded accelerator-based systems between 4 -- 8 W power budgets such as the Xilinx Zedboard (with MXP soft vector processor), NVIDIA Jetson TK1 (GPU), InForce 6410 (DSP), TI EVM5432 (DSP) as well as the Adapteva Parallella board (custom multi-core with NoC). For MNIST (28×28 images) and CIFAR10 (32×32 images), the deep layer structure is amenable to MXP-enhanced FPGA mappings to deliver 1.4 -- 5× higher energy efficiency than all other platforms. Not surprisingly, embedded GPU works better for complex networks with large image resolutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于深度学习应用的嵌入式FPGA加速器
基于fpga的嵌入式软矢量处理器可以在轻量级深度学习应用中超越嵌入式gpu和dsp的性能和能效。对于针对资源受限平台的低复杂性深度神经网络,我们开发了优化的caffe兼容深度学习库例程,针对一系列基于4 - 8 W功率预算的嵌入式加速器系统,如Xilinx Zedboard(带有MXP软矢量处理器),NVIDIA Jetson TK1 (GPU), InForce 6410 (DSP), TI EVM5432 (DSP)以及Adapteva parallelella板(带有NoC的自定义多核)。对于MNIST (28×28 images)和CIFAR10 (32×32 images),深层结构适用于mxp增强的FPGA映射,提供比所有其他平台高1.4 - 5倍的能效。毫不奇怪,嵌入式GPU更适合具有大图像分辨率的复杂网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial Predicates Evaluation in the Geohash Domain Using Reconfigurable Hardware Two-Hit Filter Synthesis for Genomic Database Search Initiation Interval Aware Resource Sharing for FPGA DSP Blocks Finding Space-Time Stream Permutations for Minimum Memory and Latency Runtime Parameterizable Regular Expression Operators for Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1