Identification of kinematic vehicle model parameters for localization purposes

Máté Fazekas, P. Gáspár, B. Németh
{"title":"Identification of kinematic vehicle model parameters for localization purposes","authors":"Máté Fazekas, P. Gáspár, B. Németh","doi":"10.1109/MFI49285.2020.9235246","DOIUrl":null,"url":null,"abstract":"The article proposes a parameter identification algorithm for a kinematic vehicle model from real measurements of on-board sensors. The motivation of the paper is to improve the localization in poor sensor performance cases. For example, when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the poor feature number, furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations the wheel encoder-based odometry can be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty. The proposed method combines the Gauss-Newton non-linear estimation techniques with Kalman-filtering in an iterative loop and identifies the wheel circumferences and track width parameters in three steps. The estimation architecture eliminates the convergence to a local optimum and the divergence resulted in the highly uncertain initial parameter values. The identification performance is verified by a real test of a compact car. The results are compared with the nominal setting, which should be applied in the lack of identification.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The article proposes a parameter identification algorithm for a kinematic vehicle model from real measurements of on-board sensors. The motivation of the paper is to improve the localization in poor sensor performance cases. For example, when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the poor feature number, furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations the wheel encoder-based odometry can be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty. The proposed method combines the Gauss-Newton non-linear estimation techniques with Kalman-filtering in an iterative loop and identifies the wheel circumferences and track width parameters in three steps. The estimation architecture eliminates the convergence to a local optimum and the divergence resulted in the highly uncertain initial parameter values. The identification performance is verified by a real test of a compact car. The results are compared with the nominal setting, which should be applied in the lack of identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以定位为目的的车辆运动学模型参数识别
提出了一种基于车载传感器实测数据的车辆运动学模型参数辨识算法。本文的目的是在传感器性能较差的情况下改善定位。例如,当GNSS信号不可用时,或者当基于视觉的方法由于特征数较差而不正确时,或者当基于imu的方法由于缺乏频繁的加速而失败时。在这种情况下,基于车轮编码器的里程计可以作为姿态估计的合适选择,然而,这种方法存在参数不确定性。该方法将高斯-牛顿非线性估计技术与卡尔曼滤波在迭代回路中相结合,分三步识别车轮周长和轨道宽度参数。该估计结构消除了收敛到局部最优和发散导致初始参数值高度不确定的问题。通过一辆小型轿车的实际试验,验证了该系统的识别性能。结果与标称设置进行了比较,在识别不足的情况下应采用标称设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1