Detecting Stance of Authorities towards Rumors in Arabic Tweets: A Preliminary Study

Fatima Haouari, Tamer Elsayed
{"title":"Detecting Stance of Authorities towards Rumors in Arabic Tweets: A Preliminary Study","authors":"Fatima Haouari, Tamer Elsayed","doi":"10.48550/arXiv.2301.05863","DOIUrl":null,"url":null,"abstract":"A myriad of studies addressed the problem of rumor verification in Twitter by either utilizing evidence from the propagation networks or external evidence from the Web. However, none of these studies exploited evidence from trusted authorities. In this paper, we define the task of detecting the stance of authorities towards rumors in tweets, i.e., whether a tweet from an authority agrees, disagrees, or is unrelated to the rumor. We believe the task is useful to augment the sources of evidence utilized by existing rumor verification systems. We construct and release the first Authority STance towards Rumors (AuSTR) dataset, where evidence is retrieved from authority timelines in Arabic Twitter. Due to the relatively limited size of our dataset, we study the usefulness of existing datasets for stance detection in our task. We show that existing datasets are somewhat useful for the task; however, they are clearly insufficient, which motivates the need to augment them with annotated data constituting stance of authorities from Twitter.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.05863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A myriad of studies addressed the problem of rumor verification in Twitter by either utilizing evidence from the propagation networks or external evidence from the Web. However, none of these studies exploited evidence from trusted authorities. In this paper, we define the task of detecting the stance of authorities towards rumors in tweets, i.e., whether a tweet from an authority agrees, disagrees, or is unrelated to the rumor. We believe the task is useful to augment the sources of evidence utilized by existing rumor verification systems. We construct and release the first Authority STance towards Rumors (AuSTR) dataset, where evidence is retrieved from authority timelines in Arabic Twitter. Due to the relatively limited size of our dataset, we study the usefulness of existing datasets for stance detection in our task. We show that existing datasets are somewhat useful for the task; however, they are clearly insufficient, which motivates the need to augment them with annotated data constituting stance of authorities from Twitter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
权威机构对阿拉伯语推特谣言的检测立场初探
无数的研究通过利用来自传播网络的证据或来自网络的外部证据来解决Twitter上的谣言验证问题。然而,这些研究都没有利用可信权威机构的证据。在本文中,我们定义了检测权威机构对推文中谣言的立场的任务,即来自权威机构的推文是同意、不同意还是与谣言无关。我们认为,这项任务有助于增加现有谣言验证系统所利用的证据来源。我们构建并发布了第一个针对谣言的权威立场(AuSTR)数据集,其中的证据是从阿拉伯语Twitter的权威时间轴中检索的。由于我们的数据集规模相对有限,我们研究了现有数据集在我们的任务中对姿态检测的有用性。我们表明,现有的数据集对任务有些用处;然而,它们显然是不够的,这促使人们需要用带有注释的数据来增强它们,这些数据构成了Twitter的权威立场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1