Denoising Internet Delay Measurements using Weak Supervision

A. Muthukumar, Ramakrishnan Durairajan
{"title":"Denoising Internet Delay Measurements using Weak Supervision","authors":"A. Muthukumar, Ramakrishnan Durairajan","doi":"10.1109/ICMLA.2019.00089","DOIUrl":null,"url":null,"abstract":"To understand the delay characteristics of the Internet, a myriad of measurement tools and techniques are proposed by the researchers in academia and industry. Datasets from such measurement tools are curated to facilitate analyses at a later time. Despite the benefits of these tools and datasets, the systematic interpretation of measurements in the face of measurement noise. Unfortunately, state-of-the-art denoising techniques are labor-intensive and ineffective. To tackle this problem, we develop NoMoNoise, an open-source framework for denoising latency measurements by leveraging the recent advancements in weak-supervised learning. NoMoNoise can generate measurement noise labels that could be integrated into the inference and control logic to remove and/or repair noisy measurements in an automated and rapid fashion. We evaluate the efficacy of NoMoNoise in a lab-based setting and a real-world setting by applying it on CAIDA's Ark dataset and show that NoMoNoise can remove noisy measurements effectively with high accuracy.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To understand the delay characteristics of the Internet, a myriad of measurement tools and techniques are proposed by the researchers in academia and industry. Datasets from such measurement tools are curated to facilitate analyses at a later time. Despite the benefits of these tools and datasets, the systematic interpretation of measurements in the face of measurement noise. Unfortunately, state-of-the-art denoising techniques are labor-intensive and ineffective. To tackle this problem, we develop NoMoNoise, an open-source framework for denoising latency measurements by leveraging the recent advancements in weak-supervised learning. NoMoNoise can generate measurement noise labels that could be integrated into the inference and control logic to remove and/or repair noisy measurements in an automated and rapid fashion. We evaluate the efficacy of NoMoNoise in a lab-based setting and a real-world setting by applying it on CAIDA's Ark dataset and show that NoMoNoise can remove noisy measurements effectively with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于弱监督的网络时延测量去噪
为了了解互联网的延迟特性,学术界和工业界的研究人员提出了无数的测量工具和技术。来自这些测量工具的数据集经过整理,以方便以后的分析。尽管这些工具和数据集有好处,但面对测量噪声的测量系统解释。不幸的是,最先进的去噪技术是劳动密集型和无效的。为了解决这个问题,我们开发了NoMoNoise,这是一个开源框架,通过利用弱监督学习的最新进展来去噪延迟测量。NoMoNoise可以生成测量噪声标签,可以集成到推理和控制逻辑中,以自动和快速的方式去除和/或修复噪声测量。我们通过将NoMoNoise应用于CAIDA的Ark数据集,在实验室环境和现实环境中评估了NoMoNoise的有效性,并表明NoMoNoise可以有效地去除噪声测量,并且精度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1