Reverse k-Nearest Neighbor monitoring on mobile objects

Tobias Emrich, H. Kriegel, Peer Kröger, M. Renz, Naixin Xu, Andreas Züfle
{"title":"Reverse k-Nearest Neighbor monitoring on mobile objects","authors":"Tobias Emrich, H. Kriegel, Peer Kröger, M. Renz, Naixin Xu, Andreas Züfle","doi":"10.1145/1869790.1869870","DOIUrl":null,"url":null,"abstract":"In this paper we focus on the problem of continuously monitoring the set of Reverse k-Nearest Neighbors (RkNNs) of a query object in a moving object database using a client server architecture. The RkNN monitoring query computes for a given query object q, the set RkNN(q) of objects having q as one of their k-nearest neighbors for each point in time. In our setting the central server can poll the exact positions of the clients if needed. However in contrast to most existing approaches for this problem we argue that in various applications, the limiting factor is not the computational time needed but the amount of traffic sent via the network. We propose an approach that minimizes the amount of communication between clients and central server by an intelligent approximation of the position of the clients. Additionally we propose several poll heuristics in order to further decrease the communication costs. In the experimental section we show the significant impact of our proposed improvements to our basic algorithm.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we focus on the problem of continuously monitoring the set of Reverse k-Nearest Neighbors (RkNNs) of a query object in a moving object database using a client server architecture. The RkNN monitoring query computes for a given query object q, the set RkNN(q) of objects having q as one of their k-nearest neighbors for each point in time. In our setting the central server can poll the exact positions of the clients if needed. However in contrast to most existing approaches for this problem we argue that in various applications, the limiting factor is not the computational time needed but the amount of traffic sent via the network. We propose an approach that minimizes the amount of communication between clients and central server by an intelligent approximation of the position of the clients. Additionally we propose several poll heuristics in order to further decrease the communication costs. In the experimental section we show the significant impact of our proposed improvements to our basic algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对移动对象进行反向k近邻监控
本文主要研究了在移动对象数据库中使用客户端-服务器架构对查询对象的反向k近邻(rknn)集进行连续监控的问题。RkNN监视查询计算给定查询对象q的RkNN(q)集合,这些对象在每个时间点的k近邻中有一个是q。在我们的设置中,如果需要,中央服务器可以轮询客户机的确切位置。然而,与大多数针对该问题的现有方法相比,我们认为在各种应用中,限制因素不是所需的计算时间,而是通过网络发送的流量。我们提出了一种方法,通过对客户端位置的智能近似,将客户端和中央服务器之间的通信量最小化。此外,为了进一步降低通信成本,我们提出了几种轮询启发式算法。在实验部分,我们展示了我们对基本算法提出的改进的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1