Text Prediction Zero Probability Problem Handling with N-gram Model and Laplace Smoothing

Raonak Jahan Mimi, Md. Abdul Masud, Rifat Rahman, Nusrat Sultana Dina
{"title":"Text Prediction Zero Probability Problem Handling with N-gram Model and Laplace Smoothing","authors":"Raonak Jahan Mimi, Md. Abdul Masud, Rifat Rahman, Nusrat Sultana Dina","doi":"10.1109/icaeee54957.2022.9836419","DOIUrl":null,"url":null,"abstract":"In Natural Language Processing, text prediction represents the process of predicting the word with the highest probability through a predictive language model from a series of text corpus. The N-gram model is familiar and considered the handiest and most computationally cost-effective model for text processing. Additionally, higher N-gram models, especially the 5-gram ones, give the best text prediction. Interestingly, these better prediction results were obtained only on the training dataset. In contrast, the highest N-gram model imploded badly on the evaluation dataset. This paper proposes an approach where the N-gram model, especially the bi-gram model, and the fine tuning with Laplace Smoothing, provide the best prediction results at the evaluation stage.","PeriodicalId":383872,"journal":{"name":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaeee54957.2022.9836419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Natural Language Processing, text prediction represents the process of predicting the word with the highest probability through a predictive language model from a series of text corpus. The N-gram model is familiar and considered the handiest and most computationally cost-effective model for text processing. Additionally, higher N-gram models, especially the 5-gram ones, give the best text prediction. Interestingly, these better prediction results were obtained only on the training dataset. In contrast, the highest N-gram model imploded badly on the evaluation dataset. This paper proposes an approach where the N-gram model, especially the bi-gram model, and the fine tuning with Laplace Smoothing, provide the best prediction results at the evaluation stage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于N-gram模型和拉普拉斯平滑的文本预测零概率问题处理
在自然语言处理中,文本预测是指通过预测语言模型从一系列文本语料库中预测出概率最高的单词的过程。N-gram模型很常见,被认为是文本处理中最方便、计算成本最高的模型。此外,更高的N-gram模型,特别是5-gram模型,给出了最好的文本预测。有趣的是,这些更好的预测结果只在训练数据集上得到。相比之下,最高N-gram模型在评估数据集上严重内爆。本文提出了一种方法,其中n图模型,特别是双图模型,以及拉普拉斯平滑的微调,在评估阶段提供了最好的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a Multi-band Sierpinski Carpet Fractal Antenna With Modified Ground Plane Effect of Number of Modes of EMD in Respiratory Rate Estimation from PPG Signal An User Interest and Payment-aware Automated Car Parking System for the Bangladeshi People Using Android Application An Improved Load Frequency Control Strategy for Single & Multi-Area Power System Wall Shear Stress Assessment of Aorta with Varying Low-density Lipoprotein Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1