Economic Forecasting With Autoregressive Methods and Neural Networks

J. Chen
{"title":"Economic Forecasting With Autoregressive Methods and Neural Networks","authors":"J. Chen","doi":"10.2139/ssrn.3521532","DOIUrl":null,"url":null,"abstract":"Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3521532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自回归方法和神经网络的经济预测
神经网络可以预测经济数据,其准确性与传统的自回归方法(如SARIMA和VAR)相当。本研究使用密集、循环、卷积和convnet/RNN混合方法对利率、消费者和生产者价格以及劳动力市场数据进行时间序列分析。经过14年的数据训练,神经网络可以做出准确的50年预测。这些预测的差距可能会揭示宏观经济体制的变化。因此,在其他方面准确的神经网络预测中,失败可能会通过无监督机器学习为理论经济假设提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Edgeworth Cycles Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs Improve the Prediction of Wind Speed using Hyperbolic Tangent Function with Artificial Neural Network Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1