V. Aroutiounian, V. Arakelyan, V. Galstyan, K. Martirosyan, P. Soukiassian
{"title":"Porous silicon near room temperature nanosensor covered by TiO2 or ZnO thin films","authors":"V. Aroutiounian, V. Arakelyan, V. Galstyan, K. Martirosyan, P. Soukiassian","doi":"10.1117/12.777345","DOIUrl":null,"url":null,"abstract":"Hydrogen nanosensor working near room temperature made of porous silicon covered by the TiO2-x or ZnO thin film was realized. Porous silicon layer was formed by electrochemical anodization on a p- and n-type silicon surface. Thereafter, n-type TiO2-x and ZnO thin films were deposited onto the porous silicon surface by electron-beam evaporation and magnetron sputtering, respectively. Platinum catalytic layer and gold electric contacts were for further measurements deposited onto obtained structures by ion-beam sputtering. The sensitivity of manufactured structures to 1000-5000 ppm of hydrogen was studied. Results of measurements showed that it is possible to realize a hydrogen nanosensor which has relatively high sensitivity and selectivity to hydrogen, durability, and short recovery and response times. Such a sensor can also be a part of silicon integral circuit and work near room temperatures.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Hydrogen nanosensor working near room temperature made of porous silicon covered by the TiO2-x or ZnO thin film was realized. Porous silicon layer was formed by electrochemical anodization on a p- and n-type silicon surface. Thereafter, n-type TiO2-x and ZnO thin films were deposited onto the porous silicon surface by electron-beam evaporation and magnetron sputtering, respectively. Platinum catalytic layer and gold electric contacts were for further measurements deposited onto obtained structures by ion-beam sputtering. The sensitivity of manufactured structures to 1000-5000 ppm of hydrogen was studied. Results of measurements showed that it is possible to realize a hydrogen nanosensor which has relatively high sensitivity and selectivity to hydrogen, durability, and short recovery and response times. Such a sensor can also be a part of silicon integral circuit and work near room temperatures.