Hybrid Algorithm for Structural Health Monitoring of High-Rate Systems

Jonathan Hong, S. Laflamme, Liang Cao, B. Joyce, J. Dodson
{"title":"Hybrid Algorithm for Structural Health Monitoring of High-Rate Systems","authors":"Jonathan Hong, S. Laflamme, Liang Cao, B. Joyce, J. Dodson","doi":"10.1115/SMASIS2018-7977","DOIUrl":null,"url":null,"abstract":"Engineering systems subject to high-rate extreme environments can often experience a sudden plastic deformation during a dynamic event. Examples of such systems include civil structures exposed to blast or aerial vehicles experiencing impacts. The change in configuration through deformation can rapidly lead to catastrophic failures resulting in intolerable losses in investments or human lives. A solution is to conduct fast system estimation enabling real-time decisions, in the order of microseconds, to mitigate such high-rate changes. To do so, we propose a model-driven observer coupled with a data-driven adaptive wavelet neural network to provide real-time stiffness estimations to continuously update a system’s model. This real-time system identification method offers adaptability of the system’s parameters to unforeseeable changes. The results of the simulations demonstrate accurate stiffness estimations in milliseconds for three different excitation conditions for a one degree-of-freedom spring, mass, and damper system with variable stiffness.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-7977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Engineering systems subject to high-rate extreme environments can often experience a sudden plastic deformation during a dynamic event. Examples of such systems include civil structures exposed to blast or aerial vehicles experiencing impacts. The change in configuration through deformation can rapidly lead to catastrophic failures resulting in intolerable losses in investments or human lives. A solution is to conduct fast system estimation enabling real-time decisions, in the order of microseconds, to mitigate such high-rate changes. To do so, we propose a model-driven observer coupled with a data-driven adaptive wavelet neural network to provide real-time stiffness estimations to continuously update a system’s model. This real-time system identification method offers adaptability of the system’s parameters to unforeseeable changes. The results of the simulations demonstrate accurate stiffness estimations in milliseconds for three different excitation conditions for a one degree-of-freedom spring, mass, and damper system with variable stiffness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速率系统结构健康监测的混合算法
高速极端环境下的工程系统在动态事件中经常会发生突然的塑性变形。这种系统的例子包括暴露在爆炸中的民用结构或受到冲击的飞行器。由于变形而导致的配置变化可能迅速导致灾难性的故障,从而导致无法忍受的投资损失或人员生命损失。一种解决方案是进行快速的系统评估,以微秒为单位进行实时决策,以减轻这种高速率的变化。为此,我们提出了一个模型驱动的观测器与数据驱动的自适应小波神经网络相结合,以提供实时刚度估计,以不断更新系统模型。这种实时系统辨识方法提供了系统参数对不可预见变化的适应性。仿真结果表明,对于具有可变刚度的单自由度弹簧、质量和阻尼系统,在三种不同的激励条件下,可以在毫秒内精确估计刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Dynamics of a Special Piezoelectric Energy Harvester With a Special Bistable Piezoelectric Cantilever Beam An Adaptive Structure Topology Optimization Approach Applied to Vertebral Bone Architecture Fabrication of Soft and Stretchable Electronics Through Integration of Printed Silver Nanoparticles and Liquid Metal Alloy Design of a Variable Stiffness Wrist Brace With an Origami Structural Element Damage Precursor Assessment in Aerospace Structural Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1