Definition of an Architecture for Dynamic and Automatic Checkpoints on Apache Spark

Paulo Vinicius Cardoso, P. Barcelos
{"title":"Definition of an Architecture for Dynamic and Automatic Checkpoints on Apache Spark","authors":"Paulo Vinicius Cardoso, P. Barcelos","doi":"10.1109/SRDS.2018.00041","DOIUrl":null,"url":null,"abstract":"Towards a scenario where failures on large-scale systems are inevitable, fault tolerant mechanisms must be efficiently applied. Checkpoint is a widely used technique that consists in saving data states for a fast recovery in case of failure. On Apache Spark – framework that uses in-memory data abstraction –, checkpoint serves to store datasets in a reliable source, so it helps on recovery process of complex datasets. However, once checkpoints must be defined by developer via source code, it may be a hard challenge to choose proper checkpoint scenarios. Therefore, this work proposes an automatic mechanism for checkpoint on Spark, which consists in monitoring system behavior and taking automatic checkpoint process according to defined policies.","PeriodicalId":219374,"journal":{"name":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Towards a scenario where failures on large-scale systems are inevitable, fault tolerant mechanisms must be efficiently applied. Checkpoint is a widely used technique that consists in saving data states for a fast recovery in case of failure. On Apache Spark – framework that uses in-memory data abstraction –, checkpoint serves to store datasets in a reliable source, so it helps on recovery process of complex datasets. However, once checkpoints must be defined by developer via source code, it may be a hard challenge to choose proper checkpoint scenarios. Therefore, this work proposes an automatic mechanism for checkpoint on Spark, which consists in monitoring system behavior and taking automatic checkpoint process according to defined policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apache Spark上动态自动检查点体系结构的定义
针对大规模系统故障不可避免的情况,必须有效地应用容错机制。检查点是一种广泛使用的技术,它保存数据状态,以便在发生故障时快速恢复。在Apache Spark(使用内存中数据抽象的框架)上,检查点用于将数据集存储在可靠的数据源中,因此它有助于复杂数据集的恢复过程。然而,一旦检查点必须由开发人员通过源代码定义,选择合适的检查点场景可能是一个困难的挑战。因此,本文提出了一种基于Spark的自动检查点机制,即监控系统行为,并根据定义的策略进行自动检查点处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling State Estimation for Fault Identification in Water Distribution Systems Under Large Disasters Mobile Cloud-of-Clouds Storage Made Efficient: A Network Coding Based Approach Collective Attestation: for a Stronger Security in Embedded Networks Impact of Man-In-The-Middle Attacks on Ethereum PubSub-SGX: Exploiting Trusted Execution Environments for Privacy-Preserving Publish/Subscribe Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1