Mapping Electric Transmission Line Infrastructure from Aerial Imagery with Deep Learning

Wei Hu, Ben Alexander, Wendell Cathcart, Atsushi Hu, Varun Nair, Lin Zuo, Jordan M. Malof, L. Collins, Kyle Bradbury
{"title":"Mapping Electric Transmission Line Infrastructure from Aerial Imagery with Deep Learning","authors":"Wei Hu, Ben Alexander, Wendell Cathcart, Atsushi Hu, Varun Nair, Lin Zuo, Jordan M. Malof, L. Collins, Kyle Bradbury","doi":"10.1109/IGARSS39084.2020.9323851","DOIUrl":null,"url":null,"abstract":"Access to electricity positively correlates with many beneficial socioeconomic outcomes in the developing world including improvements in education, health, and poverty. Efficient planning for electricity access requires information on the location of existing electric transmission and distribution infrastructure; however, the data on existing infrastructure is often unavailable or expensive. We propose a deep learning based method to automatically detect electric transmission infrastructure from aerial imagery and quantify those results with traditional object detection performance metrics. In addition, we explore two challenges to applying these techniques at scale: (1) how models trained on particular geographies generalize to other locations and (2) how the spatial resolution of imagery impacts infrastructure detection accuracy. Our approach results in object detection performance with an F1 score of 0.53 (0.47 precision and 0.60 recall). Using training data that includes more diverse geographies improves performance across the 4 geographies that we examined. Image resolution significantly impacts object detection performance and decreases precipitously as the image resolution decreases.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Access to electricity positively correlates with many beneficial socioeconomic outcomes in the developing world including improvements in education, health, and poverty. Efficient planning for electricity access requires information on the location of existing electric transmission and distribution infrastructure; however, the data on existing infrastructure is often unavailable or expensive. We propose a deep learning based method to automatically detect electric transmission infrastructure from aerial imagery and quantify those results with traditional object detection performance metrics. In addition, we explore two challenges to applying these techniques at scale: (1) how models trained on particular geographies generalize to other locations and (2) how the spatial resolution of imagery impacts infrastructure detection accuracy. Our approach results in object detection performance with an F1 score of 0.53 (0.47 precision and 0.60 recall). Using training data that includes more diverse geographies improves performance across the 4 geographies that we examined. Image resolution significantly impacts object detection performance and decreases precipitously as the image resolution decreases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的航空图像绘制输电线路基础设施
在发展中国家,获得电力与许多有益的社会经济成果呈正相关,包括改善教育、健康和贫困状况。有效的电力接入规划需要有关现有输配电基础设施位置的信息;然而,现有基础设施上的数据通常是不可用的或昂贵的。我们提出了一种基于深度学习的方法,从航空图像中自动检测电力传输基础设施,并使用传统的目标检测性能指标量化这些结果。此外,我们探讨了大规模应用这些技术的两个挑战:(1)在特定地理位置上训练的模型如何推广到其他位置;(2)图像的空间分辨率如何影响基础设施检测精度。该方法的目标检测性能F1得分为0.53(精度0.47,召回率0.60)。使用包含更多不同地理位置的训练数据可以提高我们所研究的4个地理位置的性能。图像分辨率显著影响目标检测性能,并随着图像分辨率的降低而急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1