Investigation of Wind Flow Conditions on the Flight Endurance of UAVs in Hovering Flight: A Preliminary Study

L. Scicluna, T. Sant, R. Farrugia
{"title":"Investigation of Wind Flow Conditions on the Flight Endurance of UAVs in Hovering Flight: A Preliminary Study","authors":"L. Scicluna, T. Sant, R. Farrugia","doi":"10.1115/iowtc2019-7514","DOIUrl":null,"url":null,"abstract":"\n Over the past decade the use of Unmanned Aerial Vehicles (UAVs) for the inspection of turbine blades has been registering steady progress and is fast becoming a well-established inspection methodology especially at offshore wind farms. A UAV operating in the open field is subject to varying ambient conditions which have an effect on the power required to maintain stable flight. This may have an impact on the flight endurance of the UAV, especially when operating in windy conditions. Simulations are a very useful tool for estimating the impact of such ambient conditions on the performance and flight endurance of a UAV. However, it is extremely difficult to accurately model all the dynamics at play in the open field where flow conditions are highly stochastic. Few open field studies necessary to validate such simulation models have been carried out to date in this regard. In this study, the impact of open field wind conditions on the flight endurance of a hovering UAV is investigated. The test vehicle used in this study is a quadrotor UAV, which was fitted with an array of sensors to monitor power consumption parameters of the propulsion motors whilst the vehicle is hovering at a fixed altitude above the ground. The quadrotor was also fitted with an ultrasonic wind sensor in order to measure the relevant wind parameters that the quadrotor was being subjected to during the hovering study. The test UAV was flown in different ambient conditions to establish the impact on the UAV flight endurance when subjected to different wind speeds. Results from a series of UAV test flights in the open field indicated that the power required by the UAV to maintain hovering flight decreases as the wind speed increases.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Over the past decade the use of Unmanned Aerial Vehicles (UAVs) for the inspection of turbine blades has been registering steady progress and is fast becoming a well-established inspection methodology especially at offshore wind farms. A UAV operating in the open field is subject to varying ambient conditions which have an effect on the power required to maintain stable flight. This may have an impact on the flight endurance of the UAV, especially when operating in windy conditions. Simulations are a very useful tool for estimating the impact of such ambient conditions on the performance and flight endurance of a UAV. However, it is extremely difficult to accurately model all the dynamics at play in the open field where flow conditions are highly stochastic. Few open field studies necessary to validate such simulation models have been carried out to date in this regard. In this study, the impact of open field wind conditions on the flight endurance of a hovering UAV is investigated. The test vehicle used in this study is a quadrotor UAV, which was fitted with an array of sensors to monitor power consumption parameters of the propulsion motors whilst the vehicle is hovering at a fixed altitude above the ground. The quadrotor was also fitted with an ultrasonic wind sensor in order to measure the relevant wind parameters that the quadrotor was being subjected to during the hovering study. The test UAV was flown in different ambient conditions to establish the impact on the UAV flight endurance when subjected to different wind speeds. Results from a series of UAV test flights in the open field indicated that the power required by the UAV to maintain hovering flight decreases as the wind speed increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风流条件对无人机悬停飞行续航力影响的初步研究
在过去的十年中,无人驾驶飞行器(uav)用于涡轮机叶片的检查一直在稳步发展,并迅速成为一种完善的检查方法,特别是在海上风电场。在开阔地带操作的无人机受制于不同的环境条件,这对维持稳定飞行所需的功率有影响。这可能对无人机的飞行耐力有影响,特别是在有风的条件下操作时。模拟是一个非常有用的工具,用于估计这种环境条件对无人机性能和飞行耐力的影响。然而,在流动条件高度随机的开放油田中,准确地模拟所有的动力学是非常困难的。迄今为止,在这方面进行的验证这种模拟模型所需的公开实地研究很少。本文研究了露天风条件对悬停无人机飞行续航力的影响。在这项研究中使用的测试飞行器是一架四旋翼无人机,它配备了一组传感器来监测推进电机的功耗参数,同时飞行器在地面上方的固定高度悬停。为了测量四旋翼飞行器在悬停过程中所受到的相关风参数,还在四旋翼飞行器上安装了超声风传感器。试验无人机在不同环境条件下飞行,以确定不同风速对无人机飞行续航力的影响。无人机在野外的一系列试飞结果表明,随着风速的增加,无人机维持悬停飞行所需的功率减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW Effect of Nacelle Drag on the Performance of a Floating Wind Turbine Platform Assessing the Impact of Integrating Energy Storage on the Dynamic Response of a Spar-Type Floating Wind Turbine Lifting Line Free Wake Vortex Filament Method for the Evaluation of Floating Offshore Wind Turbines: First Step — Validation for Fixed Wind Turbines Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1