SpaceCubeX: A framework for evaluating hybrid multi-core CPU/FPGA/DSP architectures

A. Schmidt, G. Weisz, M. French, T. Flatley, C. Villalpando
{"title":"SpaceCubeX: A framework for evaluating hybrid multi-core CPU/FPGA/DSP architectures","authors":"A. Schmidt, G. Weisz, M. French, T. Flatley, C. Villalpando","doi":"10.1109/AERO.2017.7943876","DOIUrl":null,"url":null,"abstract":"The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100–1,000x more than those of previous Earth Science missions for standard processing, compression, storage, and downhnk operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabihties across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100–1,000x more than those of previous Earth Science missions for standard processing, compression, storage, and downhnk operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabihties across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个评估混合多核CPU/FPGA/DSP架构的框架
SpaceCubeX项目的动机是对高性能、模块化和可扩展的机载处理的需求,以帮助科学家回答21世纪关于全球气候变化、空气质量、海洋健康和生态系统动态的关键问题,同时增加新功能,如用于极端事件预警的低延迟数据产品。这些目标转化为机载处理吞吐量要求,比以前的地球科学任务在标准处理、压缩、存储和下行操作方面的要求高出100 - 1,000倍。为了研究未来可能的架构以实现这些性能要求,SpaceCubeX项目提供了一个可进化的测试平台和框架,使候选混合CPU/FPGA/DSP处理架构的设计空间探索成为可能。该框架包括ArchGen,这是一个体系结构生成器工具,填充了候选体系结构组件、性能模型和IP内核,允许最终用户指定混合体系结构的类型、数量和连接性。该框架需要最小的扩展来集成新的处理器,例如预期的高性能航天计算机(HPSC),从而将启动基准测试的时间缩短了数月。为了评估框架,我们利用了一套广泛的高性能嵌入式计算基准和地球科学场景,以确保健壮的体系结构特征。我们报告了我们的项目第一年的努力,并展示了四个仿真试验台模型的功能,一个基线SpaceCube 2.0系统,一个双ARM A9处理器系统,一个混合四ARM A53和FPGA系统,以及一个混合四ARM A53和DSP系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1