{"title":"Enhanced clustering of complex database objects in the clustcube framework","authors":"A. Cuzzocrea, Paolo Serafino","doi":"10.1145/2390045.2390066","DOIUrl":null,"url":null,"abstract":"This paper significantly extends our previous research contribution [1], where we introduced the OLAP-based ClustCube framework for clustering and mining complex database objects extracted from distributed database settings. In particular, in this research we provide the following two novel contributions over [1]. First, we provide an innovative tree-based distance function over complex objects that takes into account the typical tree-like nature of these objects in distributed database settings. This novel distance is a relevant contribution over the simpler low-level-field-based distance presented in [1]. Second, we provide a comprehensive experimental campaign of ClustCube algorithms for computing ClustCube cubes, according to both performance metrics and accuracy metrics, against a well-known benchmark data set, and in comparison with a state-of-the-art subspace clustering algorithm for high-dimensional data. Retrieved results clearly demonstrate the superiority of our approach.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390045.2390066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper significantly extends our previous research contribution [1], where we introduced the OLAP-based ClustCube framework for clustering and mining complex database objects extracted from distributed database settings. In particular, in this research we provide the following two novel contributions over [1]. First, we provide an innovative tree-based distance function over complex objects that takes into account the typical tree-like nature of these objects in distributed database settings. This novel distance is a relevant contribution over the simpler low-level-field-based distance presented in [1]. Second, we provide a comprehensive experimental campaign of ClustCube algorithms for computing ClustCube cubes, according to both performance metrics and accuracy metrics, against a well-known benchmark data set, and in comparison with a state-of-the-art subspace clustering algorithm for high-dimensional data. Retrieved results clearly demonstrate the superiority of our approach.