Hybrid nets with variable parameters: a novel approach to fast learning under backpropagation

Jun Han, C. Moraga
{"title":"Hybrid nets with variable parameters: a novel approach to fast learning under backpropagation","authors":"Jun Han, C. Moraga","doi":"10.1109/INBS.1995.404277","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach under regular backpropagation. We introduce hybrid neural nets that have different activation functions for different layers in fully connected feed forward neural nets. We change the parameters of activation functions in hidden layers and output layer to accelerate the learning speed and to reduce the oscillation respectively. Results on the two-spirals benchmark are presented which are better than any results under backpropagation feed forward nets using monotone activation functions published previously.<<ETX>>","PeriodicalId":423954,"journal":{"name":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INBS.1995.404277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel approach under regular backpropagation. We introduce hybrid neural nets that have different activation functions for different layers in fully connected feed forward neural nets. We change the parameters of activation functions in hidden layers and output layer to accelerate the learning speed and to reduce the oscillation respectively. Results on the two-spirals benchmark are presented which are better than any results under backpropagation feed forward nets using monotone activation functions published previously.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变参数混合网络:一种反向传播下快速学习的新方法
本文提出了正则反向传播下的一种新方法。在全连接前馈神经网络中,我们引入了对不同层具有不同激活函数的混合神经网络。我们通过改变隐藏层和输出层的激活函数参数来加快学习速度和减小振荡。给出了在双螺旋基准上的结果,该结果优于以往使用单调激活函数的反向传播前馈网络的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organized learning in multi-layer networks Gene classification artificial neural system Modeling sensory representations in brain: new methods for studying functional architecture reveal unique spatial patterns A genetic algorithm for decomposition type choice in OKFDDs The splicing as an operation on formal languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1