An Item-based collaborative filtering method using Item-based hybrid similarity

S. Puntheeranurak, Thanut Chaiwitooanukool
{"title":"An Item-based collaborative filtering method using Item-based hybrid similarity","authors":"S. Puntheeranurak, Thanut Chaiwitooanukool","doi":"10.1109/ICSESS.2011.5982355","DOIUrl":null,"url":null,"abstract":"Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.","PeriodicalId":108533,"journal":{"name":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2011.5982355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于项目的混合相似度协同过滤方法
基于项目的协同过滤是推荐系统的首选技术。它使用物品评级相似度的值来预测用户的偏好。在本文中,我们加入了物品属性相似度的值来调整目标物品的预测评分方程。项目评价相似度和项目属性相似度混合技术的协同过滤结果比传统的基于项目的协同过滤技术和其他技术具有更小的平均绝对误差。实验结果表明,该算法的预测效果优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The design of frequent sequence tree in incremental mining of sequential patterns Notice of RetractionA study of incentive mechanism to weaken bullwhip effect of supply chains Design patterns in object oriented analysis and design An operational model of security policies in Service-Oriented Applications An adaptive threshold segmentation method based on BP neural network for paper defect detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1