{"title":"Arctic Field Testing – Developing the Next Generation Passive Fire Protection","authors":"A. W. Skilbred, Zuzanna Wierzba, J. Irving","doi":"10.4043/32568-ms","DOIUrl":null,"url":null,"abstract":"\n Epoxy passive fire protection (PFP) products are extensively used for fire proofing of structures and assets around the world. Significant projects such as construction of large hydrocarbon processing industry (HPI) plants may require a global supply chain meaning that a structure or an assembly may be manufactured one location and assembled in another. Manufacturing, application of coatings, handling, transportation, and construction will for many large projects take place in different climates. It is therefore important that an epoxy PFP product shows excellent cold climate properties for all climate performance.\n This study presents mechanical properties of one newly developed and three commercially available epoxy PFP products. The flexural strain of the newly developed epoxy PFP was found to be similar or higher than the other tested products for temperatures between −50 °C and 20 °C. Further, the strength at break, i.e. at the point of fracture, of the tested epoxy PFP products was found to increase as a function of decreasing temperature. Leading to the conclusion that the newly developed epoxy PFP was more robust at especially at lower temperatures, compared to the commercially available products.\n An Arctic test station located outside Longyearbyen at Svalbard in Norway was used for outdoor cold climate exposure After approximately one year, it was found that a low flexibility product showed significant cracking, whereas the more robust newly developed epoxy PFP showed no visual degradation.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, May 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/32568-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy passive fire protection (PFP) products are extensively used for fire proofing of structures and assets around the world. Significant projects such as construction of large hydrocarbon processing industry (HPI) plants may require a global supply chain meaning that a structure or an assembly may be manufactured one location and assembled in another. Manufacturing, application of coatings, handling, transportation, and construction will for many large projects take place in different climates. It is therefore important that an epoxy PFP product shows excellent cold climate properties for all climate performance.
This study presents mechanical properties of one newly developed and three commercially available epoxy PFP products. The flexural strain of the newly developed epoxy PFP was found to be similar or higher than the other tested products for temperatures between −50 °C and 20 °C. Further, the strength at break, i.e. at the point of fracture, of the tested epoxy PFP products was found to increase as a function of decreasing temperature. Leading to the conclusion that the newly developed epoxy PFP was more robust at especially at lower temperatures, compared to the commercially available products.
An Arctic test station located outside Longyearbyen at Svalbard in Norway was used for outdoor cold climate exposure After approximately one year, it was found that a low flexibility product showed significant cracking, whereas the more robust newly developed epoxy PFP showed no visual degradation.