Proactive autoscaling for edge computing systems with kubernetes

Li Ju, Prabhmanmeet Singh, S. Toor
{"title":"Proactive autoscaling for edge computing systems with kubernetes","authors":"Li Ju, Prabhmanmeet Singh, S. Toor","doi":"10.1145/3492323.3495588","DOIUrl":null,"url":null,"abstract":"With the emergence of the Internet of Things and 5G technologies, the edge computing paradigm is playing increasingly important roles with better availability, latency-control and performance. However, existing autoscaling tools for edge computing applications do not utilize heterogeneous resources of edge systems efficiently, leaving scope for performance improvement. In this work, we propose a Proactive Pod Autoscaler (PPA) for edge computing applications on Kubernetes. The proposed PPA is able to forecast workloads in advance with multiple user-defined/customized metrics and to scale edge computing applications up and down correspondingly. The PPA is optimized and evaluated on an example CPU-intensive edge computing application further. It can be concluded that the proposed PPA outperforms the default pod autoscaler of Kubernetes on both efficiency of resource utilization and application performance. The article also highlights future possible improvements on the proposed PPA.","PeriodicalId":440884,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492323.3495588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With the emergence of the Internet of Things and 5G technologies, the edge computing paradigm is playing increasingly important roles with better availability, latency-control and performance. However, existing autoscaling tools for edge computing applications do not utilize heterogeneous resources of edge systems efficiently, leaving scope for performance improvement. In this work, we propose a Proactive Pod Autoscaler (PPA) for edge computing applications on Kubernetes. The proposed PPA is able to forecast workloads in advance with multiple user-defined/customized metrics and to scale edge computing applications up and down correspondingly. The PPA is optimized and evaluated on an example CPU-intensive edge computing application further. It can be concluded that the proposed PPA outperforms the default pod autoscaler of Kubernetes on both efficiency of resource utilization and application performance. The article also highlights future possible improvements on the proposed PPA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于kubernetes的边缘计算系统的主动自动伸缩
随着物联网和5G技术的出现,边缘计算范式以更好的可用性、延迟控制和性能发挥着越来越重要的作用。然而,现有的边缘计算应用程序的自动缩放工具不能有效地利用边缘系统的异构资源,从而为性能改进留下了空间。在这项工作中,我们为Kubernetes上的边缘计算应用程序提出了一个主动Pod Autoscaler (PPA)。提议的PPA能够使用多个用户定义/自定义指标提前预测工作负载,并相应地扩展和缩小边缘计算应用程序。在一个cpu密集型边缘计算应用实例中,进一步对PPA进行了优化和评估。可以得出结论,所提出的PPA在资源利用效率和应用程序性能方面都优于Kubernetes默认的pod自动缩放器。文章还强调了拟议购电协议未来可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based distributed platform for accountable medical data sharing An empirical analysis of LADA diabetes case, control and variable importance Estimating the capacities of function-as-a-service functions Session details: International Workshop on Machine Learning and Health Informatics (MLHI) Alcoholism detection via GLCM and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1