Ship resistance prediction with Artificial Neural Networks

K. Grabowska, P. Szczuko
{"title":"Ship resistance prediction with Artificial Neural Networks","authors":"K. Grabowska, P. Szczuko","doi":"10.1109/SPA.2015.7365154","DOIUrl":null,"url":null,"abstract":"The paper is dedicated to a new method of ship's resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes parameters of 7 already built off-shore vessels, with model parameters available as a result of tests conducted on European towing tanks. Thus, the reference is used to assess ship resistance prediction with the artificial neural network approach.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper is dedicated to a new method of ship's resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes parameters of 7 already built off-shore vessels, with model parameters available as a result of tests conducted on European towing tanks. Thus, the reference is used to assess ship resistance prediction with the artificial neural network approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的船舶阻力预测
研究了一种基于人工神经网络(ANN)的船舶阻力预测新方法。在初始阶段,选定的船舶参数准备用作训练集和验证集。下一步是验证几个网络结构,并确定对结果电阻影响最大的参数。最后,提出了影响电阻的其他参数。这项研究利用了7艘已经建造的近海船只的参数,并通过在欧洲拖曳水箱上进行的测试获得了模型参数。从而为利用人工神经网络方法进行船舶阻力预测评估提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of simultaneous spoken sentences on the properties of spectral peaks Measurements and visualization of sound field distribution around organ pipe Representing the evolving temporal envelope of musical instruments sounds using Computer Vision methods Irregular sampling for X-ray imaging simulation An enhancement of software metrics as failure predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1