VLSI implementation of an improved multiplier for FFT computation in biomedical applications

A. Ajay, Dr. R. Mary Lourde
{"title":"VLSI implementation of an improved multiplier for FFT computation in biomedical applications","authors":"A. Ajay, Dr. R. Mary Lourde","doi":"10.1109/EIT.2015.7293316","DOIUrl":null,"url":null,"abstract":"Discrete Fourier Transform (DFT) is a fundamental Digital Signal Processing domain transformation technique used in many applications for frequency analysis and frequency domain processing. Fast Fourier Transform (FFT) is used for signal processing applications. It consists of addition and multiplication operations, whose speed improvement will enhance the accuracy and performance of FFT computation for any application. It is an algorithm to compute Discrete Fourier Transform (DFT) and its inverse. DFT is obtained by decomposing a sequence of values into components of different frequencies. FFT can compute DFT in O(N log N) operations unlike DFT computation that takes O(N2) arithmetic operations. This reduces computation time by several orders of magnitude and the improvement is roughly proportional to N / log N. Present day Research focus is on performance improvement in computation of FFT specific to field of application. Many performance improvement studies are in progress to implement efficient FFT computation through better performing multipliers and adders. Electroencephalographic (EEG) signals are invariably used for clinical diagnosis and conventional cognitive neuroscience. This work intends to contribute to a faster method of computation of FFT for analysis of EEG signals to classify Autistic data.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Discrete Fourier Transform (DFT) is a fundamental Digital Signal Processing domain transformation technique used in many applications for frequency analysis and frequency domain processing. Fast Fourier Transform (FFT) is used for signal processing applications. It consists of addition and multiplication operations, whose speed improvement will enhance the accuracy and performance of FFT computation for any application. It is an algorithm to compute Discrete Fourier Transform (DFT) and its inverse. DFT is obtained by decomposing a sequence of values into components of different frequencies. FFT can compute DFT in O(N log N) operations unlike DFT computation that takes O(N2) arithmetic operations. This reduces computation time by several orders of magnitude and the improvement is roughly proportional to N / log N. Present day Research focus is on performance improvement in computation of FFT specific to field of application. Many performance improvement studies are in progress to implement efficient FFT computation through better performing multipliers and adders. Electroencephalographic (EEG) signals are invariably used for clinical diagnosis and conventional cognitive neuroscience. This work intends to contribute to a faster method of computation of FFT for analysis of EEG signals to classify Autistic data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学应用中FFT计算的改进乘法器的VLSI实现
离散傅立叶变换(DFT)是一种基本的数字信号处理域变换技术,在频率分析和频域处理中有着广泛的应用。快速傅里叶变换(FFT)用于信号处理应用。它由加法和乘法运算组成,其速度的提高将提高FFT计算的准确性和性能,适用于任何应用。它是一种计算离散傅立叶变换(DFT)及其逆的算法。DFT是通过将一系列值分解成不同频率的分量来获得的。FFT可以在O(N log N)次运算中计算DFT,而DFT计算需要O(N2)次算术运算。这将计算时间减少了几个数量级,并且改进大致与N / log N成正比。目前的研究重点是针对特定应用领域的FFT计算性能改进。许多性能改进研究正在进行中,通过性能更好的乘法器和加法器来实现高效的FFT计算。脑电图(EEG)信号不可避免地用于临床诊断和传统认知神经科学。本工作旨在为脑电图信号分析提供一种更快的FFT计算方法,以对自闭症数据进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space time block code for four time slots and two transmit antennas Social routing: A novel routing protocol for delay tolerant network based on dynamic connectivity Radiation performance and Specific Absorption Rate (SAR) analysis of a compact dual band balanced antenna Design of half bridge LLC resonant converter using synchronous rectifier Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1