Long-Term Analysis Applied to Mooring Systems Design

Pedro Seabra, L. Sagrilo, P. Esperança
{"title":"Long-Term Analysis Applied to Mooring Systems Design","authors":"Pedro Seabra, L. Sagrilo, P. Esperança","doi":"10.1115/omae2020-18211","DOIUrl":null,"url":null,"abstract":"\n Nowadays, the most used methodology to predict line tensions is the short-term coupled analysis, where the mooring system responses are obtained by a time-domain analysis for only some specific design combinations of extreme environmental conditions. This mooring analysis demands certain considerations and it is not the best way to obtain the offshore structure responses. The advances in both quantity and quality of collected environmental data and the increase of the computers processing power has enabled to consider the approach of more accurate long-term methodologies for mooring systems design. This paper proposes a numerical/computational procedure to obtain the extreme loads (ULS) acting on offshore platforms’ mooring lines. The work is based on the methodology of long-term analysis, employing a 10-yr long short-term environmental dataset of 3-h sea-states, where each short-term environmental condition is composed of the simultaneously observed environmental parameters of wave (sea and swell), wind and current. The methodology is applied to the analysis of three different mooring systems: a) spread-moored FPSO, b) Semi-Submersible platform and c) turret-moored FPSO. The Bootstrap approach is employed in order to take into account the statistical uncertainty associated to the estimated long-term most probable extreme response due to the limited number of short-term environmental conditions. The work was carried out using Dynasim software [1] to generate the time domain tension time series, which were later post-processed by using computational codes developed with Python software. Longer short-term numerical simulations lengths than the short-term period (3-h) have been investigated in order to understand the influence of this parameter on the final extreme long-term top tensions.","PeriodicalId":297013,"journal":{"name":"Volume 2A: Structures, Safety, and Reliability","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the most used methodology to predict line tensions is the short-term coupled analysis, where the mooring system responses are obtained by a time-domain analysis for only some specific design combinations of extreme environmental conditions. This mooring analysis demands certain considerations and it is not the best way to obtain the offshore structure responses. The advances in both quantity and quality of collected environmental data and the increase of the computers processing power has enabled to consider the approach of more accurate long-term methodologies for mooring systems design. This paper proposes a numerical/computational procedure to obtain the extreme loads (ULS) acting on offshore platforms’ mooring lines. The work is based on the methodology of long-term analysis, employing a 10-yr long short-term environmental dataset of 3-h sea-states, where each short-term environmental condition is composed of the simultaneously observed environmental parameters of wave (sea and swell), wind and current. The methodology is applied to the analysis of three different mooring systems: a) spread-moored FPSO, b) Semi-Submersible platform and c) turret-moored FPSO. The Bootstrap approach is employed in order to take into account the statistical uncertainty associated to the estimated long-term most probable extreme response due to the limited number of short-term environmental conditions. The work was carried out using Dynasim software [1] to generate the time domain tension time series, which were later post-processed by using computational codes developed with Python software. Longer short-term numerical simulations lengths than the short-term period (3-h) have been investigated in order to understand the influence of this parameter on the final extreme long-term top tensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系泊系统设计中的长期分析
目前,最常用的预测线张力的方法是短期耦合分析,其中系泊系统的响应仅通过对极端环境条件的某些特定设计组合进行时域分析来获得。这种系泊分析需要一定的考虑,并不是获得海上结构响应的最佳方法。所收集的环境数据在数量和质量上的进步以及计算机处理能力的提高,使人们能够考虑采用更精确的长期方法来设计系泊系统。本文提出了一种求解海洋平台系泊索极限载荷的数值计算方法。这项工作基于长期分析的方法,采用了一个10年的3-h海况长期短期环境数据集,其中每个短期环境条件由同时观测到的波(海和涌)、风和流环境参数组成。该方法应用于三种不同系泊系统的分析:a)扩展系泊FPSO, b)半潜式平台和c)炮塔系泊FPSO。采用Bootstrap方法是为了考虑到由于短期环境条件数量有限而与估计的长期最可能极端响应相关的统计不确定性。使用Dynasim软件[1]生成时域张力时间序列,然后使用Python软件开发的计算代码进行后处理。为了了解该参数对最终极值长期顶张力的影响,研究了较短周期(3-h)更长的短期数值模拟长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fracture Toughness Characterization of LSAW UOE Pipes in Sour Media and Implications on Burst Pressure Comparative Study on Stress Intensity Factors for Surface Cracks in Welded Joint and Flat Plate by Using the Influence Function Method Investigations Into Fatigue of OPB Loaded Offshore Mooring Chains Linearization of the Wave Spectrum: A Comparison of Methods MIL and MIRO Diagrams for Risk-Based Positioning of Drilling Rigs With Dynamic Positioning System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1