{"title":"Pathologies Prediction on Short ECG Signals with Focus on Feature Extraction Based on Beat Morphology and Image Deformation","authors":"J. V. Prehn, Svetoslav Ivanov, G. Nalbantov","doi":"10.23919/cinc53138.2021.9662714","DOIUrl":null,"url":null,"abstract":"Automated detection of key cardiac pathologies in reduced-lead ECGs is an enabling factor in applying ECG analysis on a larger scale. The PhysioNet/Computing in Cardiology Challenge 2021 identifies a set of key cardiac pathologies and challenges us with the task to automatically detect them. Critical to this task is the extraction of features from these ECGs which, combined, mark the presence of one or more of these key cardiac pathologies. Methodology: algorithms were devised to automatically extract features based on the definitions as used in medical practice, beat morphology and image deformation. A binary classifier for each key cardiac pathology was trained using these features, extracted from the labeled ECGs from The Challenge. The binary classifiers were combined into a multi-label classifier by learning thresholds on the scores of the binary classifiers using Bayesian optimization in a cross-validation setting. Results: our contribution submitted for evaluation achieved a challenge metric score of 0.28, 0.31, 0.32, 0.28 and 0.23 placing us (team DSC) 29, 25, 25, 28 and 28 out of 39 teams which submitted an official entry on 12-, 6-,4-, 3- and 2-lead test datasets respectively.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Automated detection of key cardiac pathologies in reduced-lead ECGs is an enabling factor in applying ECG analysis on a larger scale. The PhysioNet/Computing in Cardiology Challenge 2021 identifies a set of key cardiac pathologies and challenges us with the task to automatically detect them. Critical to this task is the extraction of features from these ECGs which, combined, mark the presence of one or more of these key cardiac pathologies. Methodology: algorithms were devised to automatically extract features based on the definitions as used in medical practice, beat morphology and image deformation. A binary classifier for each key cardiac pathology was trained using these features, extracted from the labeled ECGs from The Challenge. The binary classifiers were combined into a multi-label classifier by learning thresholds on the scores of the binary classifiers using Bayesian optimization in a cross-validation setting. Results: our contribution submitted for evaluation achieved a challenge metric score of 0.28, 0.31, 0.32, 0.28 and 0.23 placing us (team DSC) 29, 25, 25, 28 and 28 out of 39 teams which submitted an official entry on 12-, 6-,4-, 3- and 2-lead test datasets respectively.