M. L. Delva, Maram Sakr, Rana Sadeghi Chegani, Mahta Khoshnam, C. Menon
{"title":"Investigation into the Potential to Create a Force Myography-based Smart-home Controller for Aging Populations","authors":"M. L. Delva, Maram Sakr, Rana Sadeghi Chegani, Mahta Khoshnam, C. Menon","doi":"10.1109/BIOROB.2018.8488087","DOIUrl":null,"url":null,"abstract":"Force Myography (FMG) quantifies the volumetric changes in a limb occurring with muscle contraction and can potentially be used to design convenient, low-cost interfaces to assist in activities of daily living (ADL). The aim of this study is to evaluate whether elders can effectively use an FMG-based wrist band to interact with their environment. In this regard, an FMG band consisted of an array of force-sensing resistors (FSRs) was designed. Ten participants were grouped in two classes, namely “senior” and “non-senior”, and were instructed to perform control gestures and unconstrained ADL tasks while wearing the designed wrist band. To evaluate the usability of the band, correct identification of hand gestures and reaction times were noted. Results showed that seniors were capable of successfully performing a control gesture within 1.4 s of displaying the instruction during online testing. The individually-trained gesture identification algorithm achieved an accuracy of 76.5% in this case. Non-seniors had a reaction time of 0.9 s with an overall classification accuracy of 91.2%. This preliminary study demonstrates the potential and feasibility of utilizing FMG-based technology to provide elders with assistance during activities of daily living.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8488087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Force Myography (FMG) quantifies the volumetric changes in a limb occurring with muscle contraction and can potentially be used to design convenient, low-cost interfaces to assist in activities of daily living (ADL). The aim of this study is to evaluate whether elders can effectively use an FMG-based wrist band to interact with their environment. In this regard, an FMG band consisted of an array of force-sensing resistors (FSRs) was designed. Ten participants were grouped in two classes, namely “senior” and “non-senior”, and were instructed to perform control gestures and unconstrained ADL tasks while wearing the designed wrist band. To evaluate the usability of the band, correct identification of hand gestures and reaction times were noted. Results showed that seniors were capable of successfully performing a control gesture within 1.4 s of displaying the instruction during online testing. The individually-trained gesture identification algorithm achieved an accuracy of 76.5% in this case. Non-seniors had a reaction time of 0.9 s with an overall classification accuracy of 91.2%. This preliminary study demonstrates the potential and feasibility of utilizing FMG-based technology to provide elders with assistance during activities of daily living.