Neural networks and SVM for heartbeat classification

M. Kedir-Talha, S. Ould-Slimane
{"title":"Neural networks and SVM for heartbeat classification","authors":"M. Kedir-Talha, S. Ould-Slimane","doi":"10.1109/ISSPA.2012.6310668","DOIUrl":null,"url":null,"abstract":"The diagnosis of cardiac dysfunctions requires the analysis of long-term ECG signal recordings, often containing hundreds to thousands of heartbeats. The purpose of this work is to propose a diagnostic system for modelling and classification of heartbeat, by use of time features and Support vector machines (SVM) classification algorithm. Neural Networks learning allow us to select a features of each heart beat on the basis of Generalized Orthogonal Forward Regression (GOFR) algorithm and a library of 132 Gaussians with different standard deviations and different means, each beat is represented by five Gaussians with different amplitudes. The parameters of this system are determined and its performance is evaluated for the MIT-BIH arrhythmia database. For a database of 364 normal heartbeats and 1148 abnormal heartbeats, we apply the SVM algorithm with Radial Basis Function kernel. Our results demonstrate that the testing performance of the neural network and SVM diagnostic system is found to be very satisfactory with a recognition rate of 99.67%.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The diagnosis of cardiac dysfunctions requires the analysis of long-term ECG signal recordings, often containing hundreds to thousands of heartbeats. The purpose of this work is to propose a diagnostic system for modelling and classification of heartbeat, by use of time features and Support vector machines (SVM) classification algorithm. Neural Networks learning allow us to select a features of each heart beat on the basis of Generalized Orthogonal Forward Regression (GOFR) algorithm and a library of 132 Gaussians with different standard deviations and different means, each beat is represented by five Gaussians with different amplitudes. The parameters of this system are determined and its performance is evaluated for the MIT-BIH arrhythmia database. For a database of 364 normal heartbeats and 1148 abnormal heartbeats, we apply the SVM algorithm with Radial Basis Function kernel. Our results demonstrate that the testing performance of the neural network and SVM diagnostic system is found to be very satisfactory with a recognition rate of 99.67%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络与支持向量机的心跳分类
心功能障碍的诊断需要分析长期的心电信号记录,通常包含数百到数千次心跳。这项工作的目的是提出一个诊断系统建模和分类的心跳,利用时间特征和支持向量机(SVM)分类算法。神经网络学习允许我们基于广义正交正回归(GOFR)算法和一个包含132个不同标准差和不同均值的高斯函数库来选择每个心跳的一个特征,每个心跳由5个不同振幅的高斯函数表示。在MIT-BIH心律失常数据库中确定了该系统的参数并对其性能进行了评估。针对一个包含364次正常心跳和1148次异常心跳的数据库,采用径向基函数核支持向量机算法。结果表明,神经网络和支持向量机诊断系统的测试性能令人满意,识别率达到99.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1