D2MoN: Detecting and Mitigating Real-Time Safety Violations in Autonomous Driving Systems

Bohan Zhang, Yafan Huang, Rachael Chen, Guanpeng Li
{"title":"D2MoN: Detecting and Mitigating Real-Time Safety Violations in Autonomous Driving Systems","authors":"Bohan Zhang, Yafan Huang, Rachael Chen, Guanpeng Li","doi":"10.1109/ISSREW55968.2022.00077","DOIUrl":null,"url":null,"abstract":"This paper proposes D2MON, a data-driven real-time safety monitor, to detect and mitigate safety violations of an autonomous vehicle (AV). The key insight is that traffic situations that lead to AV safety violations fall into patterns and can be identified by learning from existing safety violations. Our approach is to use machine learning techniques to model the traffic behaviors that result in safety violations and detect their symptoms in advance before the actual crashes happen. If D2MoN detects surroundings as dangerous, it will take safety actions to mitigate the safety violations so that the AV remains safe in the evolving traffic environment. Our steps are twofold: (1) We use software fuzzing and data augmentation techniques to generate efficient safety violation data for training our ML model. (2) We deploy the model as a plug-and-play module to the AV software, detecting and mitigating safety violations of the AV in runtime. Our evaluation demonstrates our proposed technique is effective in reducing over 99% of safety violations in an industry-level autonomous driving system, Baidu Apollo.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes D2MON, a data-driven real-time safety monitor, to detect and mitigate safety violations of an autonomous vehicle (AV). The key insight is that traffic situations that lead to AV safety violations fall into patterns and can be identified by learning from existing safety violations. Our approach is to use machine learning techniques to model the traffic behaviors that result in safety violations and detect their symptoms in advance before the actual crashes happen. If D2MoN detects surroundings as dangerous, it will take safety actions to mitigate the safety violations so that the AV remains safe in the evolving traffic environment. Our steps are twofold: (1) We use software fuzzing and data augmentation techniques to generate efficient safety violation data for training our ML model. (2) We deploy the model as a plug-and-play module to the AV software, detecting and mitigating safety violations of the AV in runtime. Our evaluation demonstrates our proposed technique is effective in reducing over 99% of safety violations in an industry-level autonomous driving system, Baidu Apollo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D2MoN:自动驾驶系统中的实时安全违规检测与缓解
本文提出了一种数据驱动的实时安全监视器D2MON,用于检测和减轻自动驾驶汽车(AV)的安全违规行为。关键的观点是,导致自动驾驶安全违规的交通状况具有一定的模式,可以通过学习现有的安全违规行为来识别。我们的方法是使用机器学习技术来模拟导致安全违规的交通行为,并在实际碰撞发生之前提前检测其症状。如果D2MoN检测到周围环境有危险,它将采取安全措施减轻安全违规行为,使自动驾驶汽车在不断变化的交通环境中保持安全。我们的步骤有两个方面:(1)我们使用软件模糊测试和数据增强技术来生成有效的安全违规数据来训练我们的ML模型。(2)我们将该模型作为即插即用模块部署到自动驾驶软件中,在运行时检测和减轻自动驾驶汽车的安全违规行为。我们的评估表明,我们提出的技术有效地减少了行业级自动驾驶系统百度阿波罗99%以上的安全违规行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability Evaluating Human Locomotion Safety in Mobile Robots Populated Environments Performance Bottleneck Analysis of Drone Computation Offloading to a Shared Fog Node Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve A Survey on Autonomous Driving System Simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1