Learning Centric Power Allocation for Edge Intelligence

Shuai Wang, Rui Wang, Qi Hao, Yik-Chung Wu, H. Poor
{"title":"Learning Centric Power Allocation for Edge Intelligence","authors":"Shuai Wang, Rui Wang, Qi Hao, Yik-Chung Wu, H. Poor","doi":"10.1109/ICC40277.2020.9148872","DOIUrl":null,"url":null,"abstract":"While machine-type communication (MTC) devices generate massive data, they often cannot process this data due to limited energy and computation power. To this end, edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge. However, this paradigm needs to maximize the learning performance instead of the communication throughput, for which the celebrated water-filling and max-min fairness algorithms become inefficient since they allocate resources merely according to the quality of wireless channels. This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model. To get insights into LCPA, an asymptotic optimal solution is derived. The solution shows that the transmit powers are inversely proportional to the channel gain, and scale exponentially with the learning parameters. Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9148872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

While machine-type communication (MTC) devices generate massive data, they often cannot process this data due to limited energy and computation power. To this end, edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge. However, this paradigm needs to maximize the learning performance instead of the communication throughput, for which the celebrated water-filling and max-min fairness algorithms become inefficient since they allocate resources merely according to the quality of wireless channels. This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model. To get insights into LCPA, an asymptotic optimal solution is derived. The solution shows that the transmit powers are inversely proportional to the channel gain, and scale exponentially with the learning parameters. Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以学习为中心的边缘智能功率分配
当机器类型通信(MTC)设备产生大量数据时,由于有限的能量和计算能力,它们通常无法处理这些数据。为此,边缘智能被提出,它收集分布式数据并在边缘执行机器学习。然而,这种模式需要最大限度地提高学习性能而不是通信吞吐量,因此著名的注水算法和最大最小公平性算法由于仅根据无线信道的质量分配资源而变得效率低下。提出了一种基于经验分类误差模型的以学习为中心的无线电资源分配方法。为了深入了解LCPA问题,我们推导了一个渐近最优解。结果表明,发射功率与信道增益成反比,并随学习参数呈指数比例增长。实验结果表明,LCPA算法明显优于其他功率分配算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full Duplex MIMO Digital Beamforming with Reduced Complexity AUXTX Analog Cancellation Cognitive Management and Control of Optical Networks in Dynamic Environments Offloading Media Traffic to Programmable Data Plane Switches Simultaneous Transmitting and Air Computing for High-Speed Point-to-Point Wireless Communication A YouTube Dataset with User-level Usage Data: Baseline Characteristics and Key Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1