The mathematical theory of learning algorithms for Boltzmann machines

H. Sussmann
{"title":"The mathematical theory of learning algorithms for Boltzmann machines","authors":"H. Sussmann","doi":"10.1109/IJCNN.1989.118278","DOIUrl":null,"url":null,"abstract":"The author analyzes a version of a well-known learning algorithm for Boltzmann machines, based on the usual alternation between learning and hallucinating phases. He outlines the rigorous proof that, for suitable choices of the parameters, the evolution of the weights follows very closely, with very high probability, an integral trajectory of the gradient of the likelihood function whose global maxima are exactly the desired weight patterns.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The author analyzes a version of a well-known learning algorithm for Boltzmann machines, based on the usual alternation between learning and hallucinating phases. He outlines the rigorous proof that, for suitable choices of the parameters, the evolution of the weights follows very closely, with very high probability, an integral trajectory of the gradient of the likelihood function whose global maxima are exactly the desired weight patterns.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻尔兹曼机器学习算法的数学理论
作者分析了一个著名的波尔兹曼机器学习算法的版本,基于通常的学习和幻觉阶段之间的交替。他给出了严格的证明,即对于合适的参数选择,权值的演化非常紧密地,以非常高的概率遵循似然函数梯度的积分轨迹,其全局最大值正好是期望的权值模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1