Spectrum sensing and vector signal analysis preprocessing based on compressed sampling

G. Frigo, C. Narduzzi
{"title":"Spectrum sensing and vector signal analysis preprocessing based on compressed sampling","authors":"G. Frigo, C. Narduzzi","doi":"10.1109/IWMN.2011.6088483","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of a compressed sampling (CS) algorithm as a spectrum sensing and signal analysis preprocessor for vector measurements of digital modulations. Compressed sampling is a paradigm which exploits sparsity, a feature common to several signals of interest, to allow the design of efficient data acquisition schemes. These need to be followed by more complex signal processing algorithms for accurate signal reconstruction.","PeriodicalId":204234,"journal":{"name":"2011 IEEE International Workshop on Measurements and Networking Proceedings (M&N)","volume":"42 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Measurements and Networking Proceedings (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2011.6088483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates the application of a compressed sampling (CS) algorithm as a spectrum sensing and signal analysis preprocessor for vector measurements of digital modulations. Compressed sampling is a paradigm which exploits sparsity, a feature common to several signals of interest, to allow the design of efficient data acquisition schemes. These need to be followed by more complex signal processing algorithms for accurate signal reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩采样的频谱感知与矢量信号分析预处理
本文研究了压缩采样(CS)算法在数字调制矢量测量中的频谱感知和信号分析预处理的应用。压缩采样是一种利用稀疏性的范例,这是几种感兴趣的信号的共同特征,允许设计有效的数据采集方案。这些都需要遵循更复杂的信号处理算法,以实现准确的信号重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed laboratory system for characterization of current distribution in electromagnetic rail launchers Distributed sensing in homeland security applications Spectrum segmentation for wideband sensing of radio signals Modeling and dynamic gain scheduling for networked systems with bounded packet losses Localization errors of low-cost GPS devices in railway worksite-like scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1