Temporally Consistent Gaussian Random Field for Video Semantic Analysis

Jinhui Tang, Xiansheng Hua, Tao Mei, Guo-Jun Qi, Shipeng Li, Xiuqing Wu
{"title":"Temporally Consistent Gaussian Random Field for Video Semantic Analysis","authors":"Jinhui Tang, Xiansheng Hua, Tao Mei, Guo-Jun Qi, Shipeng Li, Xiuqing Wu","doi":"10.1109/ICIP.2007.4380070","DOIUrl":null,"url":null,"abstract":"As a major family of semi-supervised learning, graph based semi-supervised learning methods have attracted lots of interests in the machine learning community as well as many application areas recently. However, for the application of video semantic annotation, these methods only consider the relations among samples in the feature space and neglect an intrinsic property of video data: the temporally adjacent video segments (e.g., shots) usually have similar semantic concept. In this paper, we adapt this temporal consistency property of video data into graph based semi-supervised learning and propose a novel method named temporally consistent Gaussian random field (TCGRF) to improve the annotation results. Experiments conducted on the TREC VID data set have demonstrated its effectiveness.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As a major family of semi-supervised learning, graph based semi-supervised learning methods have attracted lots of interests in the machine learning community as well as many application areas recently. However, for the application of video semantic annotation, these methods only consider the relations among samples in the feature space and neglect an intrinsic property of video data: the temporally adjacent video segments (e.g., shots) usually have similar semantic concept. In this paper, we adapt this temporal consistency property of video data into graph based semi-supervised learning and propose a novel method named temporally consistent Gaussian random field (TCGRF) to improve the annotation results. Experiments conducted on the TREC VID data set have demonstrated its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频语义分析的时间一致高斯随机场
基于图的半监督学习方法作为半监督学习的一个主要分支,近年来引起了机器学习界和许多应用领域的广泛关注。然而,对于视频语义注释的应用,这些方法只考虑了特征空间中样本之间的关系,而忽略了视频数据的一个内在属性:在时间上相邻的视频片段(如镜头)通常具有相似的语义概念。本文将视频数据的这种时间一致性特性应用到基于图的半监督学习中,提出了一种名为时间一致高斯随机场(TCGRF)的新方法来改善标注结果。在TREC VID数据集上进行的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1