A New Method for Removing Asymmetric High Density Salt and Pepper Noise

Allan Pennings, I. Svalbe
{"title":"A New Method for Removing Asymmetric High Density Salt and Pepper Noise","authors":"Allan Pennings, I. Svalbe","doi":"10.1109/DICTA.2018.8615814","DOIUrl":null,"url":null,"abstract":"The presence of salt and pepper noise in imaging is a common issue that needs to be overcome in image analysis. Many potential solutions to remove this noise have been discussed over the years, but these algorithms often make the common assumption that salt noise and pepper noise appear in equal densities. This is not necessarily the case. In this paper several filters are proposed and tested across a range of different salt to pepper ratios, which result in higher PSNR and SSIM when compared to other existing filters.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of salt and pepper noise in imaging is a common issue that needs to be overcome in image analysis. Many potential solutions to remove this noise have been discussed over the years, but these algorithms often make the common assumption that salt noise and pepper noise appear in equal densities. This is not necessarily the case. In this paper several filters are proposed and tested across a range of different salt to pepper ratios, which result in higher PSNR and SSIM when compared to other existing filters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像中椒盐噪声的存在是图像分析中需要克服的一个常见问题。多年来,人们讨论了许多消除这种噪声的潜在解决方案,但这些算法通常假设盐噪声和胡椒噪声以相同的密度出现。事实并非如此。本文提出了几种过滤器,并在不同的盐与胡椒比例范围内进行了测试,与其他现有过滤器相比,这些过滤器的PSNR和SSIM更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1