Dual Searching Window Based Face Tracking

Qiang Liu, C. Cai
{"title":"Dual Searching Window Based Face Tracking","authors":"Qiang Liu, C. Cai","doi":"10.1109/ISPACS.2006.364886","DOIUrl":null,"url":null,"abstract":"In this paper, an enhanced CAMShift (continuously adaptive mean shift) object-tracking algorithm, called dual searching window based face-tracking algorithm, is proposed. Firstly, the near complexion background is removed from video frames by using a mixture Gaussian model. An accessory window is then introduced to correct the tracking error resulting from temporary occlusion by an object with similar probability distribution. Experimental results have testified the proposed face-tracking scheme can greatly alleviate the flesh-like background interference and miss tracking due to the temporary occlusion","PeriodicalId":178644,"journal":{"name":"2006 International Symposium on Intelligent Signal Processing and Communications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Intelligent Signal Processing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2006.364886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an enhanced CAMShift (continuously adaptive mean shift) object-tracking algorithm, called dual searching window based face-tracking algorithm, is proposed. Firstly, the near complexion background is removed from video frames by using a mixture Gaussian model. An accessory window is then introduced to correct the tracking error resulting from temporary occlusion by an object with similar probability distribution. Experimental results have testified the proposed face-tracking scheme can greatly alleviate the flesh-like background interference and miss tracking due to the temporary occlusion
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双搜索窗口的人脸跟踪
本文提出了一种增强的CAMShift (continuous adaptive mean shift)目标跟踪算法,即基于双搜索窗口的人脸跟踪算法。首先,利用混合高斯模型从视频帧中去除近肤色背景;在此基础上,引入一个辅助窗口,对具有相似概率分布的物体临时遮挡造成的跟踪误差进行校正。实验结果表明,所提出的人脸跟踪方案能够极大地缓解背景肉样干扰和由于临时遮挡造成的跟踪缺失
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossy Strict Multilevel Successive Elimination Algorithm for Fast Motion Estimation A Subpixel Image Matching Technique Using Phase-Only Correlation Phase Unwrapping of Self-mixing Signals Observed in Optical Feedback Interferometry for Displacement Measurement A Low-Power and Low-Noise Amplifier for 3-5GHz UWB Applications Automatic Image Annotation based-on Rough Set Theory with Visual Keys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1