Block-Based Inter-Frame Prediction For Dynamic Point Cloud Compression

Cristiano Santos, Mateus M. Gonçalves, G. Corrêa, M. Porto
{"title":"Block-Based Inter-Frame Prediction For Dynamic Point Cloud Compression","authors":"Cristiano Santos, Mateus M. Gonçalves, G. Corrêa, M. Porto","doi":"10.1109/ICIP42928.2021.9506355","DOIUrl":null,"url":null,"abstract":"In recent years, 3D point clouds have gained popularity thanks to technological advances such as the increased computational power and the availability of low-cost devices for acquisition of 3D information, like RGBD sensors. However, raw point clouds demand a large amount of data for their representation, and compression is mandatory to allow efficient transmission and storage. Inter-frame prediction is a widely used approach to achieve high compression rates in 2D video encoders, but the current literature still lacks solutions that efficiently exploit temporal redundancy for point cloud encoding. In this work, we propose a novel inter-frame prediction for 3D point cloud compression, which explores temporal redundancies in the 3D space. Moreover, a mode decision algorithm is also proposed to dynamically choose the best encoding mode between inter and intra prediction. The proposed method yields a bitrate reduction of 15.6% and 3.5% for geometry and luma information respectively, with no significant impact in objective quality when compared to the MPEG 3DG solution, called G-PCC.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In recent years, 3D point clouds have gained popularity thanks to technological advances such as the increased computational power and the availability of low-cost devices for acquisition of 3D information, like RGBD sensors. However, raw point clouds demand a large amount of data for their representation, and compression is mandatory to allow efficient transmission and storage. Inter-frame prediction is a widely used approach to achieve high compression rates in 2D video encoders, but the current literature still lacks solutions that efficiently exploit temporal redundancy for point cloud encoding. In this work, we propose a novel inter-frame prediction for 3D point cloud compression, which explores temporal redundancies in the 3D space. Moreover, a mode decision algorithm is also proposed to dynamically choose the best encoding mode between inter and intra prediction. The proposed method yields a bitrate reduction of 15.6% and 3.5% for geometry and luma information respectively, with no significant impact in objective quality when compared to the MPEG 3DG solution, called G-PCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于块的动态点云压缩帧间预测
近年来,由于技术的进步,例如计算能力的提高和用于获取3D信息的低成本设备(如RGBD传感器)的可用性,3D点云越来越受欢迎。然而,原始的点云需要大量的数据来表示,压缩是必须的,以允许有效的传输和存储。帧间预测是在2D视频编码器中实现高压缩率的一种广泛使用的方法,但目前的文献仍然缺乏有效利用点云编码的时间冗余的解决方案。在这项工作中,我们提出了一种新的3D点云压缩帧间预测方法,该方法探索了3D空间中的时间冗余。此外,还提出了一种模式决策算法,在预测间和预测内动态选择最佳编码模式。与MPEG 3DG解决方案(称为G-PCC)相比,该方法的几何和亮度信息的比特率分别降低了15.6%和3.5%,对物镜质量没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1