Robust Path-following Control with Anti-Windup for HALE Aircraft

C. Weiser, D. Ossmann, H. Pfifer
{"title":"Robust Path-following Control with Anti-Windup for HALE Aircraft","authors":"C. Weiser, D. Ossmann, H. Pfifer","doi":"10.1109/MED54222.2022.9837232","DOIUrl":null,"url":null,"abstract":"In this paper, a robust path-tracking controller for a High Altitude Long Endurance (HALE) aircraft is presented. The main control paradigm for operating a HALE aircraft consists of a basic path following control, i.e. tracking a reference flight path and airspeed while dealing with very limited thrust. The priority lies in keeping airspeed inside the small flight envelope of HALE aircraft even during saturated thrust. For the basic path following objective, a mixed sensitivity approach is proposed which can easily deal with decoupled tracking and robustness requirements. To deal with saturated control inputs, an anti-windup scheme is incorporated in the control design. A novel observer-based mixed sensitivity design is used which allows directly using classical anti-windup methods based on back-calculation. The control design is verified in nonlinear simulation and compared to a classical total energy control based controller.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a robust path-tracking controller for a High Altitude Long Endurance (HALE) aircraft is presented. The main control paradigm for operating a HALE aircraft consists of a basic path following control, i.e. tracking a reference flight path and airspeed while dealing with very limited thrust. The priority lies in keeping airspeed inside the small flight envelope of HALE aircraft even during saturated thrust. For the basic path following objective, a mixed sensitivity approach is proposed which can easily deal with decoupled tracking and robustness requirements. To deal with saturated control inputs, an anti-windup scheme is incorporated in the control design. A novel observer-based mixed sensitivity design is used which allows directly using classical anti-windup methods based on back-calculation. The control design is verified in nonlinear simulation and compared to a classical total energy control based controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HALE飞机抗卷绕鲁棒路径跟踪控制
提出了一种用于高空长航时(HALE)飞机的鲁棒路径跟踪控制器。操作HALE飞机的主要控制范例包括基本路径跟随控制,即在处理非常有限的推力时跟踪参考飞行路径和空速。重点在于保持空速在小飞行包线内的HALE飞机,即使在饱和推力。对于基本路径跟踪目标,提出了一种混合灵敏度方法,可以很容易地处理解耦跟踪和鲁棒性要求。为了处理饱和控制输入,在控制设计中加入了一种防卷绕方案。采用了一种新的基于观测器的混合灵敏度设计,该设计允许直接使用基于反计算的经典防卷绕方法。通过非线性仿真验证了该控制设计,并与经典的基于总能量控制的控制器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Driven LQR Design for LTI systems with Exogenous Inputs Cooperative Multi-Lane Shock Wave Detection and Dissipation via Local Communication Adaptive algorithm for vessel roll prediction based on the Bayesian approach* Three-Dimensional Impact-Angle Control with Biased Proportional Navigation On the existence and uniqueness of equilibria in meshed DC microgrids with CPLs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1