Electricity Consumption Modeling and Medium-Term Forecasting Based on Grouped Grey Model, GGM(1,1)

Vincent B. Getanda, P. Kihato, P. Hinga, H. Oya
{"title":"Electricity Consumption Modeling and Medium-Term Forecasting Based on Grouped Grey Model, GGM(1,1)","authors":"Vincent B. Getanda, P. Kihato, P. Hinga, H. Oya","doi":"10.1109/PowerAfrica49420.2020.9219919","DOIUrl":null,"url":null,"abstract":"Global electricity consumption in any developing sector is increasing faster than expected and energy demand forecasting is vital for sound-sustainable energy supply-demand management. Consequently, developing accurate electricity demand forecasting models is inevitable. In this paper we propose the Grouped Grey Model (GGM(1,1)) in modeling medium-term forecasting of electricity consumption. GGM(1,1) is subjected to electricity consumption data scenario to ascertain its ability and applicability in time series data forecasting. In addition, analysis of an empirical example validates data grouping techniques in improving the accuracy of the original grey model. Hence the accuracy of the prediction on electricity consumption is improved due to data grouping techniques. The proposed model can improve energy forecasting performance for future energy plans of management in producing and distributing power. Moreover, it can enhance smart grid benefits.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Global electricity consumption in any developing sector is increasing faster than expected and energy demand forecasting is vital for sound-sustainable energy supply-demand management. Consequently, developing accurate electricity demand forecasting models is inevitable. In this paper we propose the Grouped Grey Model (GGM(1,1)) in modeling medium-term forecasting of electricity consumption. GGM(1,1) is subjected to electricity consumption data scenario to ascertain its ability and applicability in time series data forecasting. In addition, analysis of an empirical example validates data grouping techniques in improving the accuracy of the original grey model. Hence the accuracy of the prediction on electricity consumption is improved due to data grouping techniques. The proposed model can improve energy forecasting performance for future energy plans of management in producing and distributing power. Moreover, it can enhance smart grid benefits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分组灰色模型的电力消费建模与中期预测,GGM(1,1)
任何发展中部门的全球电力消费增长速度都快于预期,能源需求预测对于健全的可持续能源供需管理至关重要。因此,开发准确的电力需求预测模型势在必行。本文提出了分组灰色模型(GGM(1,1))对电力消费中期预测建模。将GGM(1,1)置于用电量数据场景下,验证其在时间序列数据预测中的能力和适用性。此外,通过实例分析,验证了数据分组技术在提高原灰色模型精度方面的作用。因此,数据分组技术提高了电力消耗预测的准确性。该模型可为未来电力生产和分配管理中的能源计划提高能源预测性能。此外,它还可以提高智能电网的效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Levelized Cost of Electricity (LCOE) of Solar PV Systems Considering their Environmental Impacts on Biodiversity Conference Booklet Modeling the Impact of Power Generation on the Water Sector in the North, Eastern and Central African Power Pools Development of an IoT-Enabled-Dynamic Master Controller Model for the Integrated Afikpo Metropolitan Power Monitoring and Control System The Basics of Transmission Line Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1