Social Network Data Mining Using Natural Language Processing and Density Based Clustering

David Khanaferov, Christopher Luc, Taehyung Wang
{"title":"Social Network Data Mining Using Natural Language Processing and Density Based Clustering","authors":"David Khanaferov, Christopher Luc, Taehyung Wang","doi":"10.1109/ICSC.2014.48","DOIUrl":null,"url":null,"abstract":"There is a growing need to make sense of all the raw data available on the Internet, hence, the purpose of this study is to explore the capabilities of data mining algorithms applied to social networks. We propose a system to mine public Twitter data for information relevant to obesity and health as an initial case study. This paper details the findings of our project and critiques the use of social networks for data mining purposes.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

There is a growing need to make sense of all the raw data available on the Internet, hence, the purpose of this study is to explore the capabilities of data mining algorithms applied to social networks. We propose a system to mine public Twitter data for information relevant to obesity and health as an initial case study. This paper details the findings of our project and critiques the use of social networks for data mining purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言处理和密度聚类的社会网络数据挖掘
人们越来越需要理解互联网上所有可用的原始数据,因此,本研究的目的是探索应用于社交网络的数据挖掘算法的能力。作为初步的案例研究,我们提出了一个系统来挖掘与肥胖和健康相关的公共Twitter数据。本文详细介绍了我们项目的发现,并批评了将社交网络用于数据挖掘目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1