CACSE: Context Aware Clustering of Stellar Evolution

Xu Teng, Adam Corpstein, Joel Holm, Willis Knox, Becker Mathie, Philip R. O. Payne, Ethan Vander Wiel, Prabin Giri, Goce Trajcevski, A. Dotter, J. Andrews, S. Coughlin, Y. Qin, J. G. Serra-Perez, N. Tran, Jaime Roman-Garja, K. Kovlakas, E. Zapartas, S. Bavera, D. Misra, T. Fragos
{"title":"CACSE: Context Aware Clustering of Stellar Evolution","authors":"Xu Teng, Adam Corpstein, Joel Holm, Willis Knox, Becker Mathie, Philip R. O. Payne, Ethan Vander Wiel, Prabin Giri, Goce Trajcevski, A. Dotter, J. Andrews, S. Coughlin, Y. Qin, J. G. Serra-Perez, N. Tran, Jaime Roman-Garja, K. Kovlakas, E. Zapartas, S. Bavera, D. Misra, T. Fragos","doi":"10.1145/3469830.3470916","DOIUrl":null,"url":null,"abstract":"We present CACSE – a system for Context Aware Clustering of Stellar Evolution – for datasets corresponding to temporal evolution of stars, which are multivariate time series, usually with a large number of attributes (e.g., ≥ 40). Typically, the datasets are obtained by simulation and are relatively large in size (5 ∼ 10 GB per certain interval of values for various initial conditions). Investigating common evolutionary trends in these datasets often depends on the context – i.e., not all the attributes are always of interest, and among the subset of the context-relevant attributes, some may have more impact than others. To enable such context-aware clustering, our CACSE system provides functionalities allowing the domain experts to dynamically select attributes that matter, and assign desired weights/priorities. Our system consists of a PostgreSQL database, Python-based middleware with RESTful and Django framework, and a web-based user interface as frontend. The user interface provides multiple interactive options, including selection of datasets and preferred attributes along with the corresponding weights. Subsequently, the users can select a time instant or a time range to visualize the formed clusters. Thus, CACSE enables a detection of changes in the the set of clusters (i.e., convoys) of stellar evolution tracks. Current version provides two of the most popular clustering algorithms – k-means and DBSCAN.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present CACSE – a system for Context Aware Clustering of Stellar Evolution – for datasets corresponding to temporal evolution of stars, which are multivariate time series, usually with a large number of attributes (e.g., ≥ 40). Typically, the datasets are obtained by simulation and are relatively large in size (5 ∼ 10 GB per certain interval of values for various initial conditions). Investigating common evolutionary trends in these datasets often depends on the context – i.e., not all the attributes are always of interest, and among the subset of the context-relevant attributes, some may have more impact than others. To enable such context-aware clustering, our CACSE system provides functionalities allowing the domain experts to dynamically select attributes that matter, and assign desired weights/priorities. Our system consists of a PostgreSQL database, Python-based middleware with RESTful and Django framework, and a web-based user interface as frontend. The user interface provides multiple interactive options, including selection of datasets and preferred attributes along with the corresponding weights. Subsequently, the users can select a time instant or a time range to visualize the formed clusters. Thus, CACSE enables a detection of changes in the the set of clusters (i.e., convoys) of stellar evolution tracks. Current version provides two of the most popular clustering algorithms – k-means and DBSCAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒星演化的上下文感知聚类
我们提出了CACSE——一个恒星演化的上下文感知聚类系统——用于与恒星时间演化相对应的数据集,这些数据集是多元时间序列,通常具有大量属性(例如,≥40)。通常,数据集是通过模拟获得的,并且大小相对较大(在各种初始条件下,每个特定的值间隔为5 ~ 10gb)。在这些数据集中调查共同的进化趋势通常取决于上下文——也就是说,并非所有的属性都是感兴趣的,在与上下文相关的属性的子集中,有些属性可能比其他属性更有影响力。为了实现这种上下文感知的集群,我们的CACSE系统提供了允许领域专家动态选择重要属性的功能,并分配所需的权重/优先级。我们的系统包括一个PostgreSQL数据库,基于python的中间件,RESTful和Django框架,以及一个基于web的用户界面作为前端。用户界面提供了多个交互选项,包括数据集和首选属性的选择以及相应的权重。随后,用户可以选择一个时间瞬间或一个时间范围来可视化形成的集群。因此,CACSE能够探测到恒星演化轨迹的一组星团(即车队)的变化。当前版本提供了两种最流行的聚类算法——k-means和DBSCAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NALMO: A Natural Language Interface for Moving Objects Databases Spatial Skyline Queries on Triangulated Irregular Networks Metro Maps on Flexible Base Grids Attribute Propagation for Utilities SPRIG: A Learned Spatial Index for Range and kNN Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1