BumbleBee: Application-aware adaptation for edge-cloud orchestration

Hyunjong Lee, S. Noghabi, Brian D. Noble, Matthew Furlong, Landon P. Cox
{"title":"BumbleBee: Application-aware adaptation for edge-cloud orchestration","authors":"Hyunjong Lee, S. Noghabi, Brian D. Noble, Matthew Furlong, Landon P. Cox","doi":"10.1109/SEC54971.2022.00017","DOIUrl":null,"url":null,"abstract":"Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and $\\boldsymbol{23\\mathrm{x}}$, and HLS video-streaming can reduce stalled playback by 77%.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and $\boldsymbol{23\mathrm{x}}$, and HLS video-streaming can reduce stalled playback by 77%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BumbleBee:边缘云编排的应用程序感知改编
现代开发人员依赖Kubernetes等容器编排框架来部署和管理跨边缘和云的混合工作负载。当边缘和云之间的网络条件发生意外变化时,工作负载必须调整其内部行为。不幸的是,容器编排框架并没有提供一种表达、部署和管理适配策略的简单方法。因此,微调或修改工作负载的自适应行为可能需要修改由大型复杂代码库构建的容器,这些代码库可能由单独的开发团队维护。本文介绍了BumbleBee,一个用于容器编排框架的轻量级扩展,它分离了应用程序逻辑和适配逻辑的关注点。BumbleBee提供了一个简单的网络内编程抽象,用于使用应用程序语义对网络数据做出决策。使用BumbleBee原型进行的实验表明,边缘ml工作负载可以适应网络变化并在断开连接中存活下来,边缘流处理工作负载可以将基准测试结果提高37.8%至$\boldsymbol{23\mathrm{x}}$, HLS视频流可以将停滞播放减少77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1