Hyunjong Lee, S. Noghabi, Brian D. Noble, Matthew Furlong, Landon P. Cox
{"title":"BumbleBee: Application-aware adaptation for edge-cloud orchestration","authors":"Hyunjong Lee, S. Noghabi, Brian D. Noble, Matthew Furlong, Landon P. Cox","doi":"10.1109/SEC54971.2022.00017","DOIUrl":null,"url":null,"abstract":"Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and $\\boldsymbol{23\\mathrm{x}}$, and HLS video-streaming can reduce stalled playback by 77%.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and $\boldsymbol{23\mathrm{x}}$, and HLS video-streaming can reduce stalled playback by 77%.