Diabetic Retinopathy Detection and Grading using Deep learning

M. Berbar
{"title":"Diabetic Retinopathy Detection and Grading using Deep learning","authors":"M. Berbar","doi":"10.21608/mjeer.2022.138003.1057","DOIUrl":null,"url":null,"abstract":"One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model. Keywords— Diabetic Retinopathy; Convolutional Neural Network; Fundus images; Deep learning.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2022.138003.1057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model. Keywords— Diabetic Retinopathy; Convolutional Neural Network; Fundus images; Deep learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病视网膜病变的深度学习检测和分级
糖尿病视网膜病变是糖尿病的并发症之一。糖尿病患者可能会完全失明。这是在没有及早发现和治疗的情况下发生的。在基金定期筛查过程中,DR的早期发现非常重要。由于眼底图像存在欠饱和和噪声,DR的检测和分级比较困难。针对眼底图像质量差的问题,提出了一种新的增强方法。本文还提出了卷积神经网络(CNN)模型的两种架构。首先是将DR图像分为正常和异常的二值分类器。在本研究中,我们还使用不同的预训练卷积神经网络模型来展示使用预训练CNN模型与新定义架构的迁移学习对性能的影响。使用Messidor1、Messidor2和Kaggle EyePACS数据集对预训练的CNN模型和两个新提出的CNN模型进行了测试。所提出的二元分类器模型在Messidor-1、Messidor-2和EyePACS数据集上的f1得分分别为0.9387、0.9629和0.9430。本文提出的第二种模型对Messidor1、Messidor2和Kaggle EyePACS数据集上f1得分分别为0.9133、0.9226和0.9393的5个等级进行了分类。新提出的CNN模型在眼底图像DR检测和DR严重程度分类方面证明了其可靠性和有效性。预处理技术使二元模型的精度提高了10.83%,AUC提高了0.13037。关键词:糖尿病视网膜病变;卷积神经网络;眼底图像;深度学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Brain Neuroimaging for Alzheimer's Disease Employing Principal Component Analysis DICOM Medical Image Security with DNA- Non-Uniform Cellular Automata and JSMP Map Based Encryption Technique Photonic Crystal Fiber Sensors, Literature Review, Challenges, and Some Novel Trends Cascading ensemble machine learning algorithms for maize yield level prediction Vibration Control of Horizontally Supported Jeffcott-Rotor System Utilizing PIRC-controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1