An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

Anwar Saeed, Muhammad Yousif, A. Fatima, Sagheer Abbas, Muhammad Adnan Khan, Leena Anum, Ali Akram
{"title":"An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling","authors":"Anwar Saeed, Muhammad Yousif, A. Fatima, Sagheer Abbas, Muhammad Adnan Khan, Leena Anum, Ali Akram","doi":"10.22042/ISECURE.2019.11.0.19","DOIUrl":null,"url":null,"abstract":"With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed shill no comprehensive results have been achieved. Cloud Computing offers elastic and scalable resource sharing services by using resource management. In this article, a hybrid approach has been proposed with an objective to achieve the maximum resource utilization. In this proposed method, adaptive back propagation neural network and multi-level priority-based scheduling are being carried out for optimum resource utilization. This hybrid technique will improve the utilization of resources in cloud computing. This shows result in simulation-based on the form of MSE and Regression with job dataset, on behalf of the comparison of three algorithms like Scaled Conjugate Gradient (SCG), Levenberg Marquardt (LM) and Bayesian Regularization (BR). BR gives a better result with 60 hidden layers Neurons to other algorithms. BR gives 2.05 MSE and 95.8 regressions in Validation, LM gives 2.91 MSE and 94.06 regressions with this and SCG gives 3.92 MSE and 91.85 regressions.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2019.11.0.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed shill no comprehensive results have been achieved. Cloud Computing offers elastic and scalable resource sharing services by using resource management. In this article, a hybrid approach has been proposed with an objective to achieve the maximum resource utilization. In this proposed method, adaptive back propagation neural network and multi-level priority-based scheduling are being carried out for optimum resource utilization. This hybrid technique will improve the utilization of resources in cloud computing. This shows result in simulation-based on the form of MSE and Regression with job dataset, on behalf of the comparison of three algorithms like Scaled Conjugate Gradient (SCG), Levenberg Marquardt (LM) and Bayesian Regularization (BR). BR gives a better result with 60 hidden layers Neurons to other algorithms. BR gives 2.05 MSE and 95.8 regressions in Validation, LM gives 2.91 MSE and 94.06 regressions with this and SCG gives 3.92 MSE and 91.85 regressions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应反向传播神经网络和多级优先级队列调度的云资源优化利用
随着云计算产业的不断创新,基于不同的部署标准提供了大量的服务。如今,每个人都试图保持联系,并要求以最少的时间和精力最大限度地利用资源。因此,优化资源利用是云计算中的一个重要挑战。为了克服这一问题,人们提出了许多技术,但尚未取得全面的成果。云计算通过使用资源管理提供弹性和可扩展的资源共享服务。本文提出了一种以实现资源最大化利用为目标的混合方法。该方法采用自适应反向传播神经网络和基于多级优先级的调度,实现资源的最优利用。这种混合技术将提高云计算中的资源利用率。这显示了基于MSE和作业数据集回归形式的模拟结果,代表了缩放共轭梯度(SCG), Levenberg Marquardt (LM)和贝叶斯正则化(BR)这三种算法的比较。与其他算法相比,BR在60个隐藏层神经元上得到了更好的结果。在验证中,BR给出2.05 MSE和95.8回归,LM给出2.91 MSE和94.06回归,SCG给出3.92 MSE和91.85回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1