Educational Data Mining: Classifier Comparison for the Course Selection Process

S. Srivastava, Saif Karigar, R. Khanna, R. Agarwal
{"title":"Educational Data Mining: Classifier Comparison for the Course Selection Process","authors":"S. Srivastava, Saif Karigar, R. Khanna, R. Agarwal","doi":"10.1109/ICSCEE.2018.8538434","DOIUrl":null,"url":null,"abstract":"The education system in India & across the world has shown a horizontal shift instead of vertical development in one specific domain. The Engineering student in current scenario try to accumulate knowledge from various interdisciplinary course’s and develop application in respective area of study [2]–[4]. This interdisciplinary growth can also be supported and compared using various data mining techniques for future prediction and provide a mathematical foundation for the current selection of the course. This paper emphasis on one such study done for opting the open elective course at leading private university. The data mining process review, apply and compare the classification algorithms like K-NN, Support Vector machine with radial basis kernel. The paper also aims at adopting the data mining techniques as the mathematical foundation for the heuristic process being used till date.","PeriodicalId":265737,"journal":{"name":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCEE.2018.8538434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The education system in India & across the world has shown a horizontal shift instead of vertical development in one specific domain. The Engineering student in current scenario try to accumulate knowledge from various interdisciplinary course’s and develop application in respective area of study [2]–[4]. This interdisciplinary growth can also be supported and compared using various data mining techniques for future prediction and provide a mathematical foundation for the current selection of the course. This paper emphasis on one such study done for opting the open elective course at leading private university. The data mining process review, apply and compare the classification algorithms like K-NN, Support Vector machine with radial basis kernel. The paper also aims at adopting the data mining techniques as the mathematical foundation for the heuristic process being used till date.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
教育数据挖掘:选课过程中的分类器比较
教育系统在印度和世界各地显示水平转变,而不是垂直发展的一个特定的领域。当前情景下的工科学生努力从各种跨学科课程中积累知识,并在各自的研究领域中发展应用[2]-[4]。这种跨学科的增长也可以使用各种数据挖掘技术来支持和比较未来的预测,并为当前课程的选择提供数学基础。本文着重介绍了一所著名私立大学的公开选修课的选择研究。数据挖掘过程回顾、应用和比较了K-NN、径向基核支持向量机等分类算法。本文还旨在采用数据挖掘技术作为迄今为止使用的启发式过程的数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NotPetya: Cyber Attack Prevention through Awareness via Gamification Accurate Disparity Map Estimation Based on Edge-preserving Filter Extended User Centered Design (UCD) Process in the Aspect of Human Computer Interaction A Review of Evidence Extraction Techniques in Big Data Environment Challenges and Benefits of Modern Code Review-Systematic Literature Review Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1