An interactive fuzzy satisficing method through particle swarm optimization for multiobjective nonlinear programming problems

T. Matsui, M. Sakawa, Kosuke Kato, Takeshi Uno, K. Tamada
{"title":"An interactive fuzzy satisficing method through particle swarm optimization for multiobjective nonlinear programming problems","authors":"T. Matsui, M. Sakawa, Kosuke Kato, Takeshi Uno, K. Tamada","doi":"10.1109/MCDM.2007.369419","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) was proposed by Kennedy et al. as a general approximate solution method for nonlinear programming problems. Its efficiency has been shown, but there have been left some shortcomings of the method. Thus, the authors proposed a revised PSO (rPSO) method incorporating the homomorphous mapping and the multiple stretching in order to cope with these shortcomings. In this paper, we construct an interactive fuzzy satisficing method for multiobjective nonlinear programming problems based on the rPSO. Furthermore, in order to obtain better solutions in consideration of the property of multiobjective programming problems, we incorporate the direction to nondominated solutions into the rPSO. Finally, we show the efficiency of the proposed method by applying it to numerical examples","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"2003 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle swarm optimization (PSO) was proposed by Kennedy et al. as a general approximate solution method for nonlinear programming problems. Its efficiency has been shown, but there have been left some shortcomings of the method. Thus, the authors proposed a revised PSO (rPSO) method incorporating the homomorphous mapping and the multiple stretching in order to cope with these shortcomings. In this paper, we construct an interactive fuzzy satisficing method for multiobjective nonlinear programming problems based on the rPSO. Furthermore, in order to obtain better solutions in consideration of the property of multiobjective programming problems, we incorporate the direction to nondominated solutions into the rPSO. Finally, we show the efficiency of the proposed method by applying it to numerical examples
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的多目标非线性规划问题交互式模糊满足方法
粒子群优化算法(Particle swarm optimization, PSO)是Kennedy等人提出的一种求解非线性规划问题的一般近似解方法。该方法的有效性已得到证明,但也存在一些不足。因此,作者提出了一种结合同态映射和多重拉伸的改进粒子群算法(rPSO)来克服这些缺点。本文构造了一种基于rPSO的多目标非线性规划问题的交互式模糊满足方法。此外,考虑到多目标规划问题的性质,为了得到更好的解,我们将非支配解的方向引入到rPSO中。最后,通过数值算例验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1