{"title":"Numerical simulation of hydrogen detonative combustion in a convergent-divergent nozzle with a central body","authors":"Y. Tunik","doi":"10.33257/phchgd.20.1.816","DOIUrl":null,"url":null,"abstract":"The work continues research on stabilization of detonation combustion of hydrogen-air mixtures entering axisymmetric convergent-divergent nozzles with high supersonic speed. The possibility of thrust generation under atmospheric conditions at heights of up to 30 km is numerically stud-ied. Hydrogen-air mixture flow modeling is carried out on the basis of non-stationary two-dimensional equations of an inviscid multi-component gas with chemical transformations. Cal-culations are performed on the basis of S.K. Godunov is of the first order of accuracy, as well as its modification, which increases the approximation order of smooth solutions to the second in spatial variables. It is shown the possibility of stable detonative combustion of hydrogen-air mixtures at altitudes up to 30 km (see figure below) at Mach number of oncoming flow of 7 up to 9. The configuration of suitable axisymmetric convergent-divergent nozzle and a central co-axial body is determined.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/phchgd.20.1.816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The work continues research on stabilization of detonation combustion of hydrogen-air mixtures entering axisymmetric convergent-divergent nozzles with high supersonic speed. The possibility of thrust generation under atmospheric conditions at heights of up to 30 km is numerically stud-ied. Hydrogen-air mixture flow modeling is carried out on the basis of non-stationary two-dimensional equations of an inviscid multi-component gas with chemical transformations. Cal-culations are performed on the basis of S.K. Godunov is of the first order of accuracy, as well as its modification, which increases the approximation order of smooth solutions to the second in spatial variables. It is shown the possibility of stable detonative combustion of hydrogen-air mixtures at altitudes up to 30 km (see figure below) at Mach number of oncoming flow of 7 up to 9. The configuration of suitable axisymmetric convergent-divergent nozzle and a central co-axial body is determined.